File size: 18,691 Bytes
aae9c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e7f690
aae9c6b
9e7f690
aae9c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import streamlit as st
import os
import tempfile
import shutil
import torch
from huggingface_hub import hf_hub_download
import cv2
from PIL import Image
import numpy as np
import time
import sys
import json
import graphviz
import pandas as pd
from datetime import datetime

# Add a custom path for model imports
if "model" not in sys.path:
    sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

# Import your prediction functions
from model.pred_func import (
    load_genconvit,
    df_face,
    pred_vid,
    real_or_fake,
    set_result,
    store_result
)
from model.config import load_config

# Set page config
st.set_page_config(
    page_title="Deepfake Detection with GenConViT",
    page_icon="🎭",
    layout="wide"
)

# Initialize logs in session state
if 'logs' not in st.session_state:
    st.session_state.logs = []

def add_log(message):
    """Add a log entry with timestamp"""
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    st.session_state.logs.append(f"[{timestamp}] {message}")

@st.cache_resource
def load_model_from_huggingface(model_type="both"):
    """Load the model weights from Hugging Face Hub based on selection"""
    config = load_config()
    add_log("Starting model weights download from Hugging Face Hub")
    
    os.makedirs("weight", exist_ok=True)
    
    with st.spinner("Downloading model weights from Hugging Face Hub..."):
        ed_path = hf_hub_download(
            repo_id="Deressa/GenConViT",
            filename="genconvit_ed_inference.pth",
        )
        vae_path = hf_hub_download(
            repo_id="Deressa/GenConViT",
            filename="genconvit_vae_inference.pth",
        )
        
        shutil.copy(ed_path, "weight/genconvit_ed_inference.pth")
        shutil.copy(vae_path, "weight/genconvit_vae_inference.pth")
    add_log("Model weights downloaded successfully")

    with st.spinner("Loading model..."):
        if model_type == "ed":
            model = load_genconvit(
                config,
                "genconvit",
                "genconvit_ed_inference",
                None,
                fp16=False
            )
            add_log("Loaded ED Model only")
        elif model_type == "vae":
            model = load_genconvit(
                config,
                "genconvit",
                None,
                "genconvit_vae_inference",
                fp16=False
            )
            add_log("Loaded VAE Model only")
        else:
            model = load_genconvit(
                config,
                "genconvit",
                "genconvit_ed_inference",
                "genconvit_vae_inference",
                fp16=False
            )
            add_log("Loaded both ED and VAE Models")

    return model, config

def is_video(file):
    """Check if a file is a valid video file"""
    try:
        cap = cv2.VideoCapture(file)
        if not cap.isOpened():
            return False
        ret, frame = cap.read()
        cap.release()
        return ret
    except:
        return False

def create_flowchart(stage=None):
    """Creates a flowchart of the deepfake detection pipeline."""
    graph = graphviz.Digraph('pipeline', graph_attr={'rankdir': 'LR', 'size': '10,15'})

    stages = {
        "upload": {"label": "Upload\nVideo", "fillcolor": "#ddeedd", "color": "#336633", "done": False},
        "frames": {"label": "Extract\nFrames", "fillcolor": "#eef2ff", "color": "#336699", "done": False},
        "preprocessing": {"label": "Preprocess\nFrames", "fillcolor": "#fff0ee", "color": "#996633", "done": False},
        "model": {"label": "GenConViT\nModel", "fillcolor": "#f0e68c", "color": "#a67d3d", "done": False},
        "results": {"label": "Results", "fillcolor": "#c0c0c0", "color": "#555555", "done": False},
    }

    if stage:
        for key in stages:
            if key == stage:
                stages[key]["fillcolor"] = "#ffcc00"
                stages[key]["color"] = "#b8860b"
                break
            else:
                stages[key]["fillcolor"] = "#90ee90"
                stages[key]["color"] = "#006400"
                stages[key]["done"] = True

    for key, details in stages.items():
        graph.node(key, details["label"], fillcolor=details["fillcolor"], color=details["color"], shape='box', style='filled,rounded')

    graph.edge("upload", "frames")
    graph.edge("frames", "preprocessing")
    graph.edge("preprocessing", "model")
    graph.edge("model", "results")

    return graph

def extract_faces_from_frames(video_path, num_frames=15):
    """Extract faces from video frames and display some of them"""
    cap = cv2.VideoCapture(video_path)
    
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frames_to_extract = min(num_frames, total_frames)
    interval = max(1, total_frames // frames_to_extract)
    
    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
    face_frames = []
    
    for i in range(0, total_frames, interval):
        if len(face_frames) >= frames_to_extract:
            break
            
        cap.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = cap.read()
        if not ret:
            continue
            
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(gray, 1.1, 4)
        
        if len(faces) > 0:
            face_frames.append(frame)
    
    cap.release()
    return face_frames[:frames_to_extract]

def process_video(video_file, model, config, num_frames=15, progress_bar=None, flowchart_placeholder=None):
    """Process a video file and return prediction"""
    with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file:
        tmp_file.write(video_file.read())
        tmp_file_path = tmp_file.name

    total_steps = 4
    progress_step = 0

    try:
        add_log(f"Processing video: {video_file.name}")
        if flowchart_placeholder:
            flowchart_placeholder.graphviz_chart(create_flowchart("frames"))

        progress_step += 1
        if progress_bar:
            progress_bar.progress(progress_step / total_steps, "Extracting faces...")
            
        with st.spinner("Extracting faces from video frames..."):
            df = df_face(tmp_file_path, num_frames, "genconvit")
            add_log(f"Extracted {len(df)} face frames")

        if len(df) >= 1:
            if flowchart_placeholder:
                flowchart_placeholder.graphviz_chart(create_flowchart("preprocessing"))

            progress_step += 1
            if progress_bar:
                progress_bar.progress(progress_step / total_steps, "Preprocessing frames...")
            time.sleep(0.5)

            if flowchart_placeholder:
                flowchart_placeholder.graphviz_chart(create_flowchart("model"))

            progress_step += 1
            if progress_bar:
                progress_bar.progress(progress_step / total_steps, "Analyzing with GenConViT...")

            with st.spinner("Analyzing video..."):
                y, y_val = pred_vid(df, model)
                prediction = real_or_fake(y)
                confidence = float(y_val)
                add_log(f"Prediction: {prediction} with confidence {confidence:.4f}")
        else:
            prediction = "Unable to detect faces"
            confidence = 0.0
            add_log("No faces detected in video")

        if flowchart_placeholder:
            flowchart_placeholder.graphviz_chart(create_flowchart("results"))
        progress_step += 1
        if progress_bar:
            progress_bar.progress(progress_step / total_steps, "Results ready!")

        os.unlink(tmp_file_path)
        add_log("Temporary video file removed")
        return prediction, confidence, df

    except Exception as e:
        if os.path.exists(tmp_file_path):
            os.unlink(tmp_file_path)
        add_log(f"Error processing video: {str(e)}")
        st.error(f"Error processing video: {str(e)}")
        return "Error", 0.0, None

def main():
    st.sidebar.title("GenConViT Deepfake Detector")
    page = st.sidebar.radio("Navigation", ["Home", "About", "How It Works"])
    
    model_type = st.sidebar.selectbox(
        "Select Model",
        options=["Both (ED + VAE)", "ED Model Only", "VAE Model Only"],
        index=0,
        help="Choose which model components to use for detection."
    )
    
    model_type_map = {
        "Both (ED + VAE)": "both",
        "ED Model Only": "ed",
        "VAE Model Only": "vae"
    }
    selected_model_type = model_type_map[model_type]

    if page == "Home":
        st.title("🎭 Deepfake Detection with GenConViT")
        st.markdown("""
        Upload a video to detect if it's a real or fake (manipulated) facial video.
        This app uses the GenConViT model to analyze facial videos for signs of manipulation.
        """)

        if 'model_loaded' not in st.session_state:
            st.session_state.model_loaded = False
        
        if not st.session_state.model_loaded:
            try:
                with st.spinner("⏳ Loading AI model..."):
                    model, config = load_model_from_huggingface(model_type=selected_model_type)
                st.success("✅ Model loaded successfully")
                st.session_state.model = model
                st.session_state.config = config
                st.session_state.model_loaded = True
                st.session_state.model_type = model_type
            except Exception as e:
                st.error(f"Failed to load model: {str(e)}")
                st.stop()
        else:
            model = st.session_state.model
            config = st.session_state.config

        uploaded_file = st.file_uploader("Choose a video file", type=["mp4", "avi", "mov", "wmv"])
        
        col1, col2 = st.columns([1, 1])
        with col1:
            num_frames = st.slider("Number of frames to process", min_value=5, max_value=30, value=15)
        

        progress_bar_placeholder = st.empty()
        flowchart_placeholder = st.empty()
        
        result_container = st.container()
        details_container = st.container()
        
        if uploaded_file is not None:
            flowchart_placeholder.graphviz_chart(create_flowchart("upload"))
            progress_bar = progress_bar_placeholder.progress(0, "Starting analysis...")
            st.video(uploaded_file)
            
            prediction, confidence, tensor_data = process_video(
                uploaded_file, model, config, num_frames, progress_bar, flowchart_placeholder
            )
            
            with result_container:
                st.subheader("Analysis Results")
                col1, col2 = st.columns([1, 1])
                
                with col1:
                    if prediction == "FAKE":
                        st.error("⚠️ DEEPFAKE DETECTED")
                        st.metric("Confidence", f"{confidence:.2f}")
                        st.markdown("This video appears to be manipulated.")
                    elif prediction == "REAL":
                        st.success("✅ AUTHENTIC VIDEO")
                        st.metric("Confidence", f"{(1 - confidence):.2f}")  # Show "real" confidence
                        st.markdown("This video appears to be authentic.")
                    else:
                        st.warning(f"⚠️ {prediction}")
                
                with col2:
                    if prediction != "Unable to detect faces" and prediction != "Error":
                        fake_percentage = confidence * 100
                        real_percentage = (1 - confidence) * 100
                        chart_data = pd.DataFrame({
                            "Category": ["Real", "Fake"],
                            "Percentage": [real_percentage, fake_percentage]
                        })
                        st.bar_chart(chart_data.set_index("Category"))
                
                # Add radar chart for more detailed visualization
                if prediction != "Unable to detect faces" and prediction != "Error":
                    st.subheader("Confidence Analysis")
                    
                    # Create radar chart data
                    radar_data = {
                        'Metrics': ['Authenticity', 'Manipulation', 'Confidence', 'Certainty', 'Reliability'],
                        'Real': [real_percentage, 100-fake_percentage, real_percentage, 
                                real_percentage*0.9, real_percentage*1.1],
                        'Fake': [fake_percentage, 100-real_percentage, fake_percentage, 
                                fake_percentage*0.9, fake_percentage*1.1]
                    }
                    
                    radar_df = pd.DataFrame(radar_data)
                    
                    # Plot radar chart using plotly
                    import plotly.graph_objects as go
                    
                    categories = radar_df['Metrics'].tolist()
                    fig = go.Figure()
                    
                    fig.add_trace(go.Scatterpolar(
                        r=radar_df['Real'].tolist(),
                        theta=categories,
                        fill='toself',
                        name='Real'
                    ))
                    
                    fig.add_trace(go.Scatterpolar(
                        r=radar_df['Fake'].tolist(),
                        theta=categories,
                        fill='toself',
                        name='Fake'
                    ))
                    
                    fig.update_layout(
                        polar=dict(
                            radialaxis=dict(
                                visible=True,
                                range=[0, 100]
                            )
                        ),
                        showlegend=True
                    )
                    
                    st.plotly_chart(fig, use_container_width=True)
            
            with details_container:
                st.subheader("Detailed Analysis")
                current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
                details = {
                    "Metric": ["Video", "Model Used", "Frames Analyzed", "Result", "Confidence", "Date/Time"],
                    "Value": [
                        uploaded_file.name, 
                        model_type,
                        str(num_frames),  # Convert to string to avoid PyArrow type issues
                        prediction, 
                        f"{confidence:.4f}", 
                        current_time
                    ]
                }
                
                df_details = pd.DataFrame(details)
                st.dataframe(df_details, use_container_width=True)
                
                csv = df_details.to_csv(index=False)
                st.download_button(
                    label="📊 Export Results as CSV",
                    data=csv,
                    file_name=f"deepfake_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
                    mime="text/csv",
                )
        
        # Logs Section
        with st.expander("Processing Logs", expanded=False):
            st.subheader("Logs")
            if st.session_state.logs:
                log_text = "\n".join(st.session_state.logs)
                st.text_area("Log Output", value=log_text, height=200, disabled=True)
            else:
                st.info("No logs available yet.")
            if st.button("Clear Logs"):
                st.session_state.logs = []
                st.rerun()
    
    elif page == "About":
        st.title("About GenConViT")
        st.markdown("""
        ## What is GenConViT?
        
        GenConViT is a deepfake detection model that combines convolutional neural networks with vision transformers
        to detect manipulated facial videos with high accuracy.
        
        ### Key Features
        
        - **Robust Detection**: Trained on multiple deepfake datasets
        - **High Accuracy**: Achieves state-of-the-art performance
        - **Real-time Analysis**: Fast processing for quick results
        
        ### Capabilities
        
        The model can detect various types of facial manipulations including:
        - Face swaps
        - Face reenactment
        - Face synthesis
        - Attribute manipulation
        
        ### Model Architecture
        """)
        
        st.image("pipeline_architecture.png", 
                 caption="GenConViT Architecture Diagram")
        
        st.markdown("""
        ### Citations
        
        If you use GenConViT in your research or applications, please cite:
          title={GenConViT: Generalized Convolutional Vision Transformer for Deepfake Detection},
          author={Sabari, Safal and Immanuel},
          journal={arXiv preprint},
          year={2025}
        }
        ```
        
        ### Source Code
        
        The model is available on GitHub: [https://github.com/Deressa/GenConViT](https://github.com/Deressa/GenConViT)
        """)
        
    elif page == "How It Works":
        st.title("How GenConViT Works")
        st.markdown("""
        ## Deepfake Detection Pipeline
        
        GenConViT processes videos through a series of steps to determine if they're real or fake:
        """)
        st.graphviz_chart(create_flowchart())
        st.markdown("""
        ### 1. Video Upload
        The process begins when you upload a video file to be analyzed.
        
        ### 2. Frame Extraction
        The system extracts key frames from the video for analysis.
        
        ### 3. Preprocessing
        Frames are preprocessed to detect and crop faces, normalize lighting, and prepare for analysis.
        
        ### 4. Model Analysis
        The GenConViT model analyzes the facial features and movement patterns to detect signs of manipulation.
        
        ### 5. Results
        The system provides a prediction along with a confidence score, indicating whether the video is real or fake.
        
        ## Technical Details
        
        GenConViT combines the strengths of:
        - Convolutional Neural Networks (CNN) for local feature extraction
        - Vision Transformers (ViT) for global context understanding
        
        This hybrid approach enables better detection across different types of deepfakes and manipulation techniques.
        """)

st.sidebar.markdown("---")
st.sidebar.markdown("© 2025 GenConViT")
st.sidebar.markdown("Created by Safal Immanuel Sabari")

if __name__ == "__main__":
    main()