Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,416 Bytes
b5ce381 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import torchvision
from einops import rearrange
import numpy as np
import math
import torchaudio
import torch
import importlib
from data_utils import create_masks_from_landmarks_box
import torch.nn.functional as F
def save_audio_video(
video,
audio=None,
frame_rate=25,
sample_rate=16000,
save_path="temp.mp4",
):
"""Save audio and video to a single file.
video: (t, c, h, w)
audio: (channels t)
"""
save_path = str(save_path)
if isinstance(video, torch.Tensor):
video = video.cpu().numpy()
video_tensor = rearrange(video, "t c h w -> t h w c").astype(np.uint8)
print("video_tensor shape", video_tensor.shape)
print("audio shape", audio.shape)
if audio is not None:
# Assuming audio is a tensor of shape (channels, samples)
audio_tensor = audio
torchvision.io.write_video(
save_path,
video_tensor,
fps=frame_rate,
audio_array=audio_tensor,
audio_fps=sample_rate,
video_codec="h264", # Specify a codec to address the error
audio_codec="aac",
)
else:
torchvision.io.write_video(
save_path,
video_tensor,
fps=frame_rate,
video_codec="h264", # Specify a codec to address the error
audio_codec="aac",
)
return save_path
def trim_pad_audio(audio, sr, max_len_sec=None, max_len_raw=None):
len_file = audio.shape[-1]
if max_len_sec or max_len_raw:
max_len = max_len_raw if max_len_raw is not None else int(max_len_sec * sr)
if len_file < int(max_len):
# dummy = np.zeros((1, int(max_len_sec * sr) - len_file))
# extened_wav = np.concatenate((audio_data, dummy[0]))
extened_wav = torch.nn.functional.pad(
audio, (0, int(max_len) - len_file), "constant"
)
else:
extened_wav = audio[:, : int(max_len)]
else:
extened_wav = audio
return extened_wav
def get_raw_audio(audio_path, audio_rate, fps=25):
audio, sr = torchaudio.load(audio_path, channels_first=True)
if audio.shape[0] > 1:
audio = audio.mean(0, keepdim=True)
audio = torchaudio.functional.resample(audio, orig_freq=sr, new_freq=audio_rate)[0]
samples_per_frame = math.ceil(audio_rate / fps)
n_frames = audio.shape[-1] / samples_per_frame
if not n_frames.is_integer():
audio = trim_pad_audio(
audio, audio_rate, max_len_raw=math.ceil(n_frames) * samples_per_frame
)
audio = rearrange(audio, "(f s) -> f s", s=samples_per_frame)
return audio
def calculate_splits(tensor, min_last_size):
# Check the total number of elements in the tensor
total_size = tensor.size(1) # size along the second dimension
# If total size is less than the minimum size for the last split, return the tensor as a single split
if total_size <= min_last_size:
return [tensor]
# Calculate number of splits and size of each split
num_splits = (total_size - min_last_size) // min_last_size + 1
base_size = (total_size - min_last_size) // num_splits
# Create split sizes list
split_sizes = [base_size] * (num_splits - 1)
split_sizes.append(
total_size - sum(split_sizes)
) # Ensure the last split has at least min_last_size
# Adjust sizes to ensure they sum exactly to total_size
sum_sizes = sum(split_sizes)
while sum_sizes != total_size:
for i in range(num_splits):
if sum_sizes < total_size:
split_sizes[i] += 1
sum_sizes += 1
if sum_sizes >= total_size:
break
# Split the tensor
splits = torch.split(tensor, split_sizes, dim=1)
return splits
def make_into_multiple_of(x, multiple, dim=0):
"""Make the torch tensor into a multiple of the given number."""
if x.shape[dim] % multiple != 0:
x = torch.cat(
[
x,
torch.zeros(
*x.shape[:dim],
multiple - (x.shape[dim] % multiple),
*x.shape[dim + 1 :],
).to(x.device),
],
dim=dim,
)
return x
def default(value, default_value):
return default_value if value is None else value
def instantiate_from_config(config):
if not "target" in config:
if config == "__is_first_stage__":
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def get_obj_from_str(string, reload=False, invalidate_cache=True):
module, cls = string.rsplit(".", 1)
if invalidate_cache:
importlib.invalidate_caches()
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def load_landmarks(
landmarks: np.ndarray,
original_size,
target_size=(64, 64),
nose_index=28,
):
"""
Load and process facial landmarks to create masks.
Args:
landmarks: Facial landmarks array
original_size: Original size of the video frames
index: Index for non-dub mode
target_size: Target size for the output mask
is_dub: Whether this is for dubbing mode
what_mask: Type of mask to create ("full", "box", "heart", "mouth")
nose_index: Index of the nose landmark
Returns:
Processed landmarks mask
"""
expand_box = 0.0
if len(landmarks.shape) == 2:
landmarks = landmarks[None, ...]
mask = create_masks_from_landmarks_box(
landmarks,
(original_size[0], original_size[1]),
box_expand=expand_box,
nose_index=nose_index,
)
mask = F.interpolate(mask.unsqueeze(1).float(), size=target_size, mode="nearest")
return mask
def create_pipeline_inputs(
audio: torch.Tensor,
audio_interpolation: torch.Tensor,
num_frames: int,
video_emb: torch.Tensor,
landmarks: np.ndarray,
overlap: int = 1,
add_zero_flag: bool = False,
mask_arms: bool = None,
nose_index: int = 28,
):
"""
Create inputs for the keyframe generation and interpolation pipeline.
Args:
video: Input video tensor
audio: Audio embeddings for keyframe generation
audio_interpolation: Audio embeddings for interpolation
num_frames: Number of frames per segment
video_emb: Optional video embeddings
landmarks: Facial landmarks for mask generation
overlap: Number of frames to overlap between segments
add_zero_flag: Whether to add zero flag every num_frames
what_mask: Type of mask to generate ("box" or other options)
mask_arms: Optional mask for arms region
nose_index: Index of the nose landmark point
Returns:
Tuple containing all necessary inputs for the pipeline
"""
audio_interpolation_chunks = []
audio_image_preds = []
gt_chunks = []
gt_keyframes_chunks = []
# Adjustment for overlap to ensure segments are created properly
step = num_frames - overlap
# Ensure there's at least one step forward on each iteration
if step < 1:
step = 1
audio_image_preds_idx = []
audio_interp_preds_idx = []
masks_chunks = []
masks_interpolation_chunks = []
for i in range(0, audio.shape[0] - num_frames + 1, step):
try:
audio[i + num_frames - 1]
except IndexError:
break # Last chunk is smaller than num_frames
segment_end = i + num_frames
gt_chunks.append(video_emb[i:segment_end])
masks = load_landmarks(
landmarks[i:segment_end],
(512, 512),
target_size=(64, 64),
nose_index=nose_index,
)
if mask_arms is not None:
masks = np.logical_and(
masks, np.logical_not(mask_arms[i:segment_end, None, ...])
)
masks_interpolation_chunks.append(masks)
if i not in audio_image_preds_idx:
audio_image_preds.append(audio[i])
masks_chunks.append(masks[0])
gt_keyframes_chunks.append(video_emb[i])
audio_image_preds_idx.append(i)
if segment_end - 1 not in audio_image_preds_idx:
audio_image_preds_idx.append(segment_end - 1)
audio_image_preds.append(audio[segment_end - 1])
masks_chunks.append(masks[-1])
gt_keyframes_chunks.append(video_emb[segment_end - 1])
audio_interpolation_chunks.append(audio_interpolation[i:segment_end])
audio_interp_preds_idx.append([i, segment_end - 1])
# If the flag is on, add element 0 every 14 audio elements
if add_zero_flag:
first_element = audio_image_preds[0]
len_audio_image_preds = (
len(audio_image_preds) + (len(audio_image_preds) + 1) % num_frames
)
for i in range(0, len_audio_image_preds, num_frames):
audio_image_preds.insert(i, first_element)
audio_image_preds_idx.insert(i, None)
masks_chunks.insert(i, masks_chunks[0])
gt_keyframes_chunks.insert(i, gt_keyframes_chunks[0])
to_remove = [idx is None for idx in audio_image_preds_idx]
audio_image_preds_idx_clone = [idx for idx in audio_image_preds_idx]
if add_zero_flag:
# Remove the added elements from the list
audio_image_preds_idx = [
sample for i, sample in zip(to_remove, audio_image_preds_idx) if not i
]
interpolation_cond_list = []
for i in range(0, len(audio_image_preds_idx) - 1, overlap if overlap > 0 else 2):
interpolation_cond_list.append(
[audio_image_preds_idx[i], audio_image_preds_idx[i + 1]]
)
# Since we generate num_frames at a time, we need to ensure that the last chunk is of size num_frames
# Calculate the number of frames needed to make audio_image_preds a multiple of num_frames
frames_needed = (num_frames - (len(audio_image_preds) % num_frames)) % num_frames
# Extend from the start of audio_image_preds
audio_image_preds = audio_image_preds + [audio_image_preds[-1]] * frames_needed
masks_chunks = masks_chunks + [masks_chunks[-1]] * frames_needed
gt_keyframes_chunks = (
gt_keyframes_chunks + [gt_keyframes_chunks[-1]] * frames_needed
)
to_remove = to_remove + [True] * frames_needed
audio_image_preds_idx_clone = (
audio_image_preds_idx_clone + [audio_image_preds_idx_clone[-1]] * frames_needed
)
print(
f"Added {frames_needed} frames from the start to make audio_image_preds a multiple of {num_frames}"
)
# random_cond_idx = np.random.randint(0, len(video_emb))
random_cond_idx = 0
assert len(to_remove) == len(audio_image_preds), (
"to_remove and audio_image_preds must have the same length"
)
return (
gt_chunks,
gt_keyframes_chunks,
audio_interpolation_chunks,
audio_image_preds,
video_emb[random_cond_idx],
masks_chunks,
masks_interpolation_chunks,
to_remove,
audio_interp_preds_idx,
audio_image_preds_idx_clone,
)
|