File size: 28,204 Bytes
b5ce381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
from functools import partial
from typing import List, Optional, Union

from einops import rearrange, repeat
import copy

from ...modules.diffusionmodules.openaimodel import *
from ...modules.video_attention import SpatialVideoTransformer
from ...modules.diffusionmodules.model import FaceLocator
from ...util import default
from .util import AlphaBlender


class VideoResBlock(ResBlock):
    def __init__(
        self,
        channels: int,
        emb_channels: int,
        dropout: float,
        video_kernel_size: Union[int, List[int]] = 3,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        out_channels: Optional[int] = None,
        use_conv: bool = False,
        use_scale_shift_norm: bool = False,
        dims: int = 2,
        use_checkpoint: bool = False,
        up: bool = False,
        down: bool = False,
        skip_time: bool = False,
    ):
        super().__init__(
            channels,
            emb_channels,
            dropout,
            out_channels=out_channels,
            use_conv=use_conv,
            use_scale_shift_norm=use_scale_shift_norm,
            dims=dims,
            use_checkpoint=use_checkpoint,
            up=up,
            down=down,
        )

        self.time_stack = ResBlock(
            default(out_channels, channels),
            emb_channels,
            dropout=dropout,
            dims=3,
            out_channels=default(out_channels, channels),
            use_scale_shift_norm=False,
            use_conv=False,
            up=False,
            down=False,
            kernel_size=video_kernel_size,
            use_checkpoint=use_checkpoint,
            exchange_temb_dims=True,
        )
        self.time_mixer = AlphaBlender(
            alpha=merge_factor,
            merge_strategy=merge_strategy,
            rearrange_pattern="b t -> b 1 t 1 1",
        )
        self.skip_time = skip_time

    def forward(
        self,
        x: th.Tensor,
        emb: th.Tensor,
        num_video_frames: int,
        image_only_indicator: Optional[th.Tensor] = None,
    ) -> th.Tensor:
        x = super().forward(x, emb)

        if self.skip_time:
            return x

        x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
        x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)

        x = self.time_stack(
            x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
        )
        x = self.time_mixer(
            x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
        )
        x = rearrange(x, "b c t h w -> (b t) c h w")
        return x


class VideoUNet(nn.Module):
    def __init__(
        self,
        in_channels: int,
        model_channels: int,
        out_channels: int,
        num_res_blocks: int,
        attention_resolutions: int,
        dropout: float = 0.0,
        channel_mult: List[int] = (1, 2, 4, 8),
        conv_resample: bool = True,
        dims: int = 2,
        num_classes: Optional[int] = None,
        use_checkpoint: bool = False,
        num_heads: int = -1,
        num_head_channels: int = -1,
        num_heads_upsample: int = -1,
        use_scale_shift_norm: bool = False,
        resblock_updown: bool = False,
        transformer_depth: Union[List[int], int] = 1,
        transformer_depth_middle: Optional[int] = None,
        context_dim: Optional[int] = None,
        time_downup: bool = False,
        time_context_dim: Optional[int] = None,
        extra_ff_mix_layer: bool = False,
        use_spatial_context: bool = False,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        spatial_transformer_attn_type: str = "softmax",
        video_kernel_size: Union[int, List[int]] = 3,
        use_linear_in_transformer: bool = False,
        adm_in_channels: Optional[int] = None,
        disable_temporal_crossattention: bool = False,
        max_ddpm_temb_period: int = 10000,
        fine_tuning_method: str = None,
        unfreeze_blocks: Optional[List[str]] = None,
        adapter_kwargs: Optional[dict] = {},
        audio_cond_method: str = None,
        audio_dim: Optional[int] = 0,
        additional_audio_frames: Optional[int] = 0,
        skip_time: bool = False,
        use_ada_aug: bool = False,
        encode_landmarks: bool = False,
        reference_to: str = None,
    ):
        super().__init__()
        assert context_dim is not None

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1

        if num_head_channels == -1:
            assert num_heads != -1

        self.additional_audio_frames = additional_audio_frames
        audio_multiplier = additional_audio_frames * 2 + 1
        audio_dim = audio_dim * audio_multiplier

        self.audio_is_context = "both" in audio_cond_method

        if "both" == audio_cond_method:
            audio_cond_method = "to_time_emb_image"
        elif "both_keyframes" == audio_cond_method:
            audio_cond_method = "to_time_emb"

        if "to_time_emb" in audio_cond_method:
            adm_in_channels += audio_dim

        print(adm_in_channels, audio_dim, audio_cond_method)

        self.adapter = None
        self.audio_cond_method = audio_cond_method

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        if isinstance(transformer_depth, int):
            transformer_depth = len(channel_mult) * [transformer_depth]
        transformer_depth_middle = default(
            transformer_depth_middle, transformer_depth[-1]
        )

        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        self.use_ada_aug = use_ada_aug
        if use_ada_aug:
            self.map_aug = linear(9, time_embed_dim)

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
            elif self.num_classes == "timestep":
                self.label_emb = nn.Sequential(
                    Timestep(model_channels),
                    nn.Sequential(
                        linear(model_channels, time_embed_dim),
                        nn.SiLU(),
                        linear(time_embed_dim, time_embed_dim),
                    ),
                )

            elif self.num_classes == "sequential":
                if adm_in_channels > 0:
                    assert adm_in_channels is not None
                    self.label_emb = nn.Sequential(
                        nn.Sequential(
                            linear(adm_in_channels, time_embed_dim),
                            nn.SiLU(),
                            linear(time_embed_dim, time_embed_dim),
                        )
                    )
                else:
                    # Disabling the label embedding
                    self.num_classes = None
            else:
                raise ValueError()

        self.encode_landmarks = encode_landmarks
        if encode_landmarks:
            self.face_locator = FaceLocator(
                320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)
            )

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
                    conv_nd(dims, in_channels, model_channels, 3, padding=1)
                )
            ]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1

        def get_attention_layer(
            ch,
            num_heads,
            dim_head,
            depth=1,
            context_dim=None,
            use_checkpoint=False,
            disabled_sa=False,
            audio_context_dim=None,
        ):
            return SpatialVideoTransformer(
                ch,
                num_heads,
                dim_head,
                depth=depth,
                context_dim=context_dim,
                audio_context_dim=audio_context_dim,
                time_context_dim=time_context_dim,
                dropout=dropout,
                ff_in=extra_ff_mix_layer,
                use_spatial_context=use_spatial_context,
                merge_strategy=merge_strategy,
                merge_factor=merge_factor,
                checkpoint=use_checkpoint,
                use_linear=use_linear_in_transformer,
                attn_mode=spatial_transformer_attn_type,
                disable_self_attn=disabled_sa,
                disable_temporal_crossattention=disable_temporal_crossattention,
                max_time_embed_period=max_ddpm_temb_period,
                skip_time=skip_time,
                reference_to=reference_to,
            )

        def get_resblock(
            merge_factor,
            merge_strategy,
            video_kernel_size,
            ch,
            time_embed_dim,
            dropout,
            out_ch,
            dims,
            use_checkpoint,
            use_scale_shift_norm,
            down=False,
            up=False,
        ):
            return VideoResBlock(
                merge_factor=merge_factor,
                merge_strategy=merge_strategy,
                video_kernel_size=video_kernel_size,
                channels=ch,
                emb_channels=time_embed_dim,
                dropout=dropout,
                out_channels=out_ch,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
                down=down,
                up=up,
                skip_time=skip_time,
            )

        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    get_resblock(
                        merge_factor=merge_factor,
                        merge_strategy=merge_strategy,
                        video_kernel_size=video_kernel_size,
                        ch=ch,
                        time_embed_dim=time_embed_dim,
                        dropout=dropout,
                        out_ch=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels

                    layers.append(
                        get_attention_layer(
                            ch,
                            num_heads,
                            dim_head,
                            depth=transformer_depth[level],
                            context_dim=context_dim,
                            audio_context_dim=audio_dim
                            if "cross_attention" in audio_cond_method
                            else None,
                            use_checkpoint=use_checkpoint,
                            disabled_sa=False,
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                ds *= 2
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        get_resblock(
                            merge_factor=merge_factor,
                            merge_strategy=merge_strategy,
                            video_kernel_size=video_kernel_size,
                            ch=ch,
                            time_embed_dim=time_embed_dim,
                            dropout=dropout,
                            out_ch=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
                        else Downsample(
                            ch,
                            conv_resample,
                            dims=dims,
                            out_channels=out_ch,
                            third_down=time_downup,
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)

                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels

        self.middle_block = TimestepEmbedSequential(
            get_resblock(
                merge_factor=merge_factor,
                merge_strategy=merge_strategy,
                video_kernel_size=video_kernel_size,
                ch=ch,
                time_embed_dim=time_embed_dim,
                out_ch=None,
                dropout=dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            get_attention_layer(
                ch,
                num_heads,
                dim_head,
                depth=transformer_depth_middle,
                context_dim=context_dim,
                audio_context_dim=audio_dim
                if "new_cross_attention" in audio_cond_method
                else None,
                use_checkpoint=use_checkpoint,
            ),
            get_resblock(
                merge_factor=merge_factor,
                merge_strategy=merge_strategy,
                video_kernel_size=video_kernel_size,
                ch=ch,
                out_ch=None,
                time_embed_dim=time_embed_dim,
                dropout=dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()

                layers = [
                    get_resblock(
                        merge_factor=merge_factor,
                        merge_strategy=merge_strategy,
                        video_kernel_size=video_kernel_size,
                        ch=ch + ich,
                        time_embed_dim=time_embed_dim,
                        dropout=dropout,
                        out_ch=model_channels * mult,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = model_channels * mult
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels

                    layers.append(
                        get_attention_layer(
                            ch,
                            num_heads,
                            dim_head,
                            depth=transformer_depth[level],
                            context_dim=context_dim,
                            audio_context_dim=audio_dim
                            if "new_cross_attention" == audio_cond_method
                            else None,
                            use_checkpoint=use_checkpoint,
                            disabled_sa=False,
                        )
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
                    ds //= 2
                    layers.append(
                        get_resblock(
                            merge_factor=merge_factor,
                            merge_strategy=merge_strategy,
                            video_kernel_size=video_kernel_size,
                            ch=ch,
                            time_embed_dim=time_embed_dim,
                            dropout=dropout,
                            out_ch=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
                        )
                        if resblock_updown
                        else Upsample(
                            ch,
                            conv_resample,
                            dims=dims,
                            out_channels=out_ch,
                            third_up=time_downup,
                        )
                    )

                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch),
            nn.SiLU(),
            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
        )

        if fine_tuning_method is not None:
            # Freeze everything except the adapter
            for param in self.parameters():
                param.requires_grad = False
            if self.adapter is not None:
                for param in self.adapter.parameters():
                    param.requires_grad = True
            if len(unfreeze_blocks):
                if "input" in unfreeze_blocks:
                    for param in self.input_blocks[0].parameters():
                        param.requires_grad = True
                    # break  # only unfreeze the first input block
                if "label_emb" in unfreeze_blocks:
                    for param in self.label_emb.parameters():
                        param.requires_grad = True

    def get_skip_attention_at(
        self,
        skip_attention_at: List[int],
        curr_layer: int,
        batch_size: int,
        num_video_frames: int,
    ):
        if skip_attention_at is None:
            return None

        skip_attention = th.zeros(len(skip_attention_at), 1, dtype=th.bool)

        for i, layer in enumerate(skip_attention_at):
            skip_attention[i] = layer == curr_layer
        skip_attention = repeat(
            skip_attention, "b ... -> (b t) ...", t=num_video_frames
        )
        assert skip_attention.shape[0] == batch_size, (
            f"{skip_attention.shape[0]} != {batch_size}"
        )
        return skip_attention

    def forward(
        self,
        x: th.Tensor,
        timesteps: th.Tensor,
        context: Optional[th.Tensor] = None,
        reference_context: Optional[th.Tensor] = None,
        y: Optional[th.Tensor] = None,
        audio_emb: Optional[th.Tensor] = None,
        landmarks: Optional[th.Tensor] = None,
        aug_labels: Optional[th.Tensor] = None,
        time_context: Optional[th.Tensor] = None,
        num_video_frames: Optional[int] = 1,
        image_only_indicator: Optional[th.Tensor] = None,
        skip_spatial_attention_at: Optional[List[int]] = None,
        skip_temporal_attention_at: Optional[List[int]] = None,
    ):
        if self.audio_is_context:
            assert audio_emb is None
            audio_emb = context.clone()

        curr_context_idx = 0
        num_video_frames = (
            num_video_frames
            if isinstance(num_video_frames, int)
            else num_video_frames[0]
        )
        if reference_context is not None:
            copy_context = copy.deepcopy(reference_context)
            mid = copy_context.pop(-1)
            copy_context.insert((len(copy_context) // 2) - 1, mid)
            reference_context = copy_context
            curr_context_idx = 0
            if num_video_frames > 1:
                reference_context = [
                    repeat(ref_context, "b h w -> (b t) h w", t=num_video_frames)
                    for ref_context in reference_context
                ]

        or_batch_size = x.shape[0] // num_video_frames
        if (
            image_only_indicator is not None
            and image_only_indicator.shape[0] != or_batch_size
        ):
            # TODO: fix this
            image_only_indicator = repeat(
                image_only_indicator, "b ... -> (b t) ...", t=2
            )

        if context is not None and x.shape[0] != context.shape[0]:
            context = repeat(context, "b ... -> b t ...", t=num_video_frames)
            context = rearrange(context, "b t ... -> (b t) ...", t=num_video_frames)

        if "cross_attention" in self.audio_cond_method:
            assert audio_emb is not None
            if audio_emb.ndim == 4:
                audio_emb = rearrange(audio_emb, "b t d c -> b (t d) c")

        #     context = th.cat([context, audio_emb], dim=1)

        if self.audio_cond_method == "cross_time":
            assert audio_emb is not None
            time_context = audio_emb

        if y is not None and y.shape[0] != x.shape[0]:
            y = repeat(y, "b ... -> b t ...", t=num_video_frames)
            y = rearrange(y, "b t ... -> (b t) ...", t=num_video_frames)

        hs = []
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)

        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y is not None or "to_time_emb" in self.audio_cond_method

            if self.audio_cond_method == "to_time_emb":
                assert audio_emb is not None
                audio_emb = rearrange(audio_emb, "b t c -> (b t) c")
                if y is not None:
                    y = th.cat([y, audio_emb], dim=1)
                else:
                    y = audio_emb
            elif self.audio_cond_method == "to_time_emb_image":
                assert audio_emb is not None

                audio_emb = rearrange(audio_emb, "b t c -> b (t c)")
                if y is not None:
                    y = th.cat([y, audio_emb], dim=1)
                else:
                    y = audio_emb
            assert y.shape[0] == x.shape[0], (
                f"{y.shape} != {x.shape} and audio_emb.shape: {audio_emb.shape}"
            )

            emb = emb + self.label_emb(y)

        if self.use_ada_aug:
            assert aug_labels is not None, (
                "must provide aug_labels if use_ada_aug is True"
            )
            emb = emb + self.map_aug(aug_labels)

        h = x

        if self.encode_landmarks:
            landmarks_emb = self.face_locator(landmarks)
            landmarks_emb = rearrange(landmarks_emb, "b c t h w -> (b t) c h w")
            # print("landmarks_emb:", landmarks_emb.shape)
        for i, module in enumerate(self.input_blocks):
            # print(image_only_indicator.shape, num_video_frames, h.shape)
            if i == 1 and self.encode_landmarks:
                h = h + landmarks_emb
            # print("h.shape:", h.shape, i)
            skip_spatial_attention = self.get_skip_attention_at(
                skip_spatial_attention_at,
                curr_context_idx,
                x.shape[0],
                num_video_frames,
            )
            skip_temporal_attention = self.get_skip_attention_at(
                skip_temporal_attention_at,
                curr_context_idx,
                x.shape[0],
                num_video_frames,
            )
            h, is_attention = module(
                h,
                emb,
                context=context,
                reference_context=reference_context[curr_context_idx]
                if reference_context is not None
                else None,
                audio_context=audio_emb
                if "cross_attention" in self.audio_cond_method
                else None,
                image_only_indicator=image_only_indicator,
                time_context=time_context,
                num_video_frames=num_video_frames,
                skip_spatial_attention=skip_spatial_attention,
                skip_temporal_attention=skip_temporal_attention,
            )
            if is_attention:
                curr_context_idx = (
                    None if curr_context_idx is None else curr_context_idx + 1
                )
            hs.append(h)
        skip_spatial_attention = self.get_skip_attention_at(
            skip_spatial_attention_at, curr_context_idx, x.shape[0], num_video_frames
        )
        skip_temporal_attention = self.get_skip_attention_at(
            skip_temporal_attention_at, curr_context_idx, x.shape[0], num_video_frames
        )
        h, is_attention = self.middle_block(
            h,
            emb,
            context=context,
            reference_context=reference_context[curr_context_idx]
            if reference_context is not None
            else None,
            audio_context=audio_emb
            if "cross_attention" in self.audio_cond_method
            else None,
            image_only_indicator=image_only_indicator,
            time_context=time_context,
            num_video_frames=num_video_frames,
            skip_spatial_attention=skip_spatial_attention,
            skip_temporal_attention=skip_temporal_attention,
        )
        curr_context_idx = None if curr_context_idx is None else curr_context_idx + 1
        for i, module in enumerate(self.output_blocks):
            skip_x = hs.pop()
            if self.adapter is not None:
                skip_x = self.adapter[i](
                    skip_x, n_frames=num_video_frames, condition=audio_emb
                )
            h = th.cat([h, skip_x], dim=1)
            skip_spatial_attention = self.get_skip_attention_at(
                skip_spatial_attention_at,
                curr_context_idx,
                x.shape[0],
                num_video_frames,
            )
            skip_temporal_attention = self.get_skip_attention_at(
                skip_temporal_attention_at,
                curr_context_idx,
                x.shape[0],
                num_video_frames,
            )
            h, is_attention = module(
                h,
                emb,
                context=context,
                reference_context=reference_context[curr_context_idx]
                if reference_context is not None
                else None,
                audio_context=audio_emb
                if "cross_attention" in self.audio_cond_method
                else None,
                image_only_indicator=image_only_indicator,
                time_context=time_context,
                num_video_frames=num_video_frames,
                skip_spatial_attention=skip_spatial_attention,
                skip_temporal_attention=skip_temporal_attention,
            )
            if is_attention:
                curr_context_idx = (
                    None if curr_context_idx is None else curr_context_idx + 1
                )
        # h = h.type(x.dtype)
        return self.out(h)