File size: 22,596 Bytes
b5ce381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
"""
Partially ported from https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py
"""

from collections import defaultdict
from typing import Dict, Union

import torch
from omegaconf import ListConfig, OmegaConf
from tqdm import tqdm
from einops import rearrange

from ...modules.diffusionmodules.sampling_utils import (
    get_ancestral_step,
    linear_multistep_coeff,
    to_d,
    to_neg_log_sigma,
    to_sigma,
    chunk_inputs,
)
from ...util import append_dims, default, instantiate_from_config

DEFAULT_GUIDER = {"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider"}


class BaseDiffusionSampler:
    def __init__(
        self,
        discretization_config: Union[Dict, ListConfig, OmegaConf],
        num_steps: Union[int, None] = None,
        guider_config: Union[Dict, ListConfig, OmegaConf, None] = None,
        verbose: bool = True,
        device: str = "cuda",
    ):
        self.num_steps = num_steps
        self.discretization = instantiate_from_config(discretization_config)
        self.guider = instantiate_from_config(
            default(
                guider_config,
                DEFAULT_GUIDER,
            )
        )
        self.verbose = verbose
        self.device = device

    def set_num_steps(self, num_steps: int):
        self.num_steps = num_steps

    def prepare_sampling_loop(self, x, cond, uc=None, num_steps=None, strength=1.0):
        print("Num steps: ", self.num_steps if num_steps is None else num_steps)
        sigmas = self.discretization(self.num_steps if num_steps is None else num_steps, device=self.device)
        if strength != 1.0:
            init_timestep = min(int(len(sigmas) * strength), len(sigmas))
            t_start = max(len(sigmas) - init_timestep, 0)
            # sigmas[:t_start] = torch.ones_like(sigmas[:t_start]) * sigmas[t_start]
            sigmas = sigmas[t_start:]
        uc = default(uc, cond)

        x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
        num_sigmas = len(sigmas)

        s_in = x.new_ones([x.shape[0]])

        return x, s_in, sigmas, num_sigmas, cond, uc

    def denoise(self, x, denoiser, sigma, cond, uc):
        denoised = denoiser(*self.guider.prepare_inputs(x, sigma, cond, uc))
        denoised = self.guider(denoised, sigma)
        return denoised

    def get_sigma_gen(self, num_sigmas):
        sigma_generator = range(num_sigmas - 1)
        if self.verbose:
            print("#" * 30, " Sampling setting ", "#" * 30)
            print(f"Sampler: {self.__class__.__name__}")
            print(f"Discretization: {self.discretization.__class__.__name__}")
            print(f"Guider: {self.guider.__class__.__name__}")
            sigma_generator = tqdm(
                sigma_generator,
                total=num_sigmas,
                desc=f"Sampling with {self.__class__.__name__} for {num_sigmas} steps",
            )
        return sigma_generator


class FIFODiffusionSampler(BaseDiffusionSampler):
    def __init__(self, lookahead=False, num_frames=14, num_partitions=4, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.num_frames = num_frames
        self.lookahead = lookahead
        self.num_partitions = num_partitions
        self.num_steps = self.num_frames * self.num_partitions
        self.fifo = []

    def get_sigma_gen(self, num_sigmas, total_n_frames):
        total = total_n_frames + num_sigmas - self.num_frames
        sigma_generator = range(total_n_frames + num_sigmas - self.num_frames - 1)
        if self.verbose:
            print("#" * 30, " Sampling setting ", "#" * 30)
            print(f"Sampler: {self.__class__.__name__}")
            print(f"Discretization: {self.discretization.__class__.__name__}")
            print(f"Guider: {self.guider.__class__.__name__}")
            sigma_generator = tqdm(
                sigma_generator,
                total=total,
                desc=f"Sampling with {self.__class__.__name__} for {total} steps",
            )
        return sigma_generator

    def prepare_sampling_loop(self, x, cond, uc=None):
        sigmas = self.discretization(self.num_steps, device=self.device)

        uc = default(uc, cond)

        x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
        num_sigmas = len(sigmas)

        s_in = x.new_ones([x.shape[0]])

        return x, s_in, sigmas, num_sigmas, cond, uc


class SingleStepDiffusionSampler(BaseDiffusionSampler):
    def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc, *args, **kwargs):
        raise NotImplementedError

    def euler_step(self, x, d, dt):
        return x + dt * d


class EDMSampler(SingleStepDiffusionSampler):
    def __init__(self, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.s_churn = s_churn
        self.s_tmin = s_tmin
        self.s_tmax = s_tmax
        self.s_noise = s_noise

    def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, gamma=0.0):
        sigma_hat = sigma * (gamma + 1.0)
        if gamma > 0:
            eps = torch.randn_like(x) * self.s_noise
            x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5

        denoised = self.denoise(x, denoiser, sigma_hat, cond, uc)
        if x.ndim == 5:
            denoised = rearrange(denoised, "(b t) c h w -> b c t h w", b=x.shape[0])

        d = to_d(x, sigma_hat, denoised)
        dt = append_dims(next_sigma - sigma_hat, x.ndim)

        euler_step = self.euler_step(x, d, dt)
        x = self.possible_correction_step(euler_step, x, d, dt, next_sigma, denoiser, cond, uc)
        return x

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, strength=1.0):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc, num_steps, strength=strength)

        for i in self.get_sigma_gen(num_sigmas):
            gamma = (
                min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) if self.s_tmin <= sigmas[i] <= self.s_tmax else 0.0
            )
            x = self.sampler_step(
                s_in * sigmas[i],
                s_in * sigmas[i + 1],
                denoiser,
                x,
                cond,
                uc,
                gamma,
            )

        return x


class EDMSampleCFGplusplus(SingleStepDiffusionSampler):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, gamma=0.0):
        sigma_hat = sigma

        denoised, x_u = self.denoise(x, denoiser, sigma_hat, cond, uc)
        if x.ndim == 5:
            denoised = rearrange(denoised, "(b t) c h w -> b c t h w", b=x.shape[0])
            x_u = rearrange(x_u, "(b t) c h w -> b c t h w", b=x.shape[0])

        d = to_d(x, sigma_hat, x_u)
        dt = append_dims(next_sigma - sigma_hat, x.ndim)
        next_sigma = append_dims(next_sigma, x.ndim)

        euler_step = self.euler_step(denoised, d, next_sigma)
        x = self.possible_correction_step(euler_step, x, d, dt, next_sigma, denoiser, cond, uc)
        return x

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, strength=1.0):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc, num_steps, strength=strength)

        for i in self.get_sigma_gen(num_sigmas):
            s_in = x.new_ones([x.shape[0]])
            x = self.sampler_step(
                s_in * sigmas[i],
                s_in * sigmas[i + 1],
                denoiser,
                x,
                cond,
                uc,
                None,
            )

        return x


def shift_latents(latents):
    # shift latents
    latents[:, :, :-1] = latents[:, :, 1:].clone()

    # add new noise to the last frame
    latents[:, :, -1] = torch.randn_like(latents[:, :, -1])

    return latents


class FIFOEDMSampler(FIFODiffusionSampler):
    """
    The problem is that the original implementation doesn't take into consideration the condition.
    So we need to check if this can work with the condition. Don't have time to check this now.
    """

    def __init__(self, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.s_churn = s_churn
        self.s_tmin = s_tmin
        self.s_tmax = s_tmax
        self.s_noise = s_noise

    def euler_step(self, x, d, dt):
        return x + dt * d

    def possible_correction_step(self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc):
        return euler_step

    def concatenate_list_dict(self, dict1):
        for k, v in dict1.items():
            if isinstance(v, list):
                dict1[k] = torch.cat(v, dim=0)
            else:
                dict1[k] = v
        return dict1

    def prepare_latents(self, x, c, uc, sigmas, num_sigmas):
        latents_list = []
        sigma_hat_list = []
        sigma_next_list = []
        c_list = defaultdict(list)
        uc_list = defaultdict(list)

        video = torch.load("/data/home/antoni/code/generative-models-dub/samples_z.pt")
        video = rearrange(video, "t c h w -> () c t h w")

        for k, v in c.items():
            if not isinstance(v, torch.Tensor):
                c_list[k] = v
                uc_list[k] = uc[k]

        if self.lookahead:
            for i in range(self.num_frames // 2):
                gamma = (
                    min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
                    if self.s_tmin <= sigmas[i] <= self.s_tmax
                    else 0.0
                )
                sigma = sigmas[i]
                sigma_hat = sigma * (gamma + 1.0)
                if gamma > 0:
                    eps = torch.randn_like(video[:, :, [0]]) * self.s_noise
                    latents = video[:, :, [0]] + eps * append_dims(sigma_hat**2 - sigma**2, video.ndim) ** 0.5
                else:
                    latents = video[:, :, [0]]

                for k, v in c.items():
                    if isinstance(v, torch.Tensor):
                        c_list[k].append(v[[0]])
                for k, v in uc.items():
                    if isinstance(v, torch.Tensor):
                        uc_list[k].append(v[[0]])

                latents_list.append(latents)
                sigma_hat_list.append(sigma_hat)
                sigma_next_list.append(sigmas[i + 1])

        for i in range(num_sigmas - 1):
            gamma = (
                min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) if self.s_tmin <= sigmas[i] <= self.s_tmax else 0.0
            )
            sigma = sigmas[i]
            sigma_hat = sigma * (gamma + 1.0)
            frame_idx = max(0, i - (num_sigmas - self.num_frames))
            print(frame_idx)
            if gamma > 0:
                eps = torch.randn_like(video[:, :, [frame_idx]]) * self.s_noise
                latents = video[:, :, [frame_idx]] + eps * append_dims(sigma_hat**2 - sigma**2, video.ndim) ** 0.5
            else:
                latents = video[:, :, [frame_idx]]

            for k, v in c.items():
                if isinstance(v, torch.Tensor):
                    c_list[k].append(
                        v[[frame_idx]] if v.shape[0] == video.shape[2] else v[[frame_idx // self.num_frames]]
                    )
            for k, v in uc.items():
                if isinstance(v, torch.Tensor):
                    uc_list[k].append(
                        v[[frame_idx]] if v.shape[0] == video.shape[2] else v[[frame_idx // self.num_frames]]
                    )

            latents_list.append(latents)
            sigma_hat_list.append(sigma_hat)
            sigma_next_list.append(sigmas[i + 1])

        latents = torch.cat(latents_list, dim=2)
        sigma_hat = torch.stack(sigma_hat_list, dim=0)
        sigma_next = torch.stack(sigma_next_list, dim=0)

        c_list = self.concatenate_list_dict(c_list)
        uc_list = self.concatenate_list_dict(uc_list)

        return latents, sigma_hat, sigma_next, c_list, uc_list

    def sampler_step(self, sigma_hat, next_sigma, denoiser, x, cond, uc=None):
        denoised = self.denoise(x, denoiser, sigma_hat, cond, uc)
        if x.ndim == 5:
            x = rearrange(x, "b c t h w -> (b t) c h w")

        d = to_d(x, sigma_hat, denoised)
        dt = append_dims(next_sigma - sigma_hat, x.ndim)

        euler_step = self.euler_step(x, d, dt)
        x = self.possible_correction_step(euler_step, x, d, dt, next_sigma, denoiser, cond, uc)
        return x

    def merge_cond_dict(self, cond, total_n_frames):
        for k, v in cond.items():
            if not isinstance(v, torch.Tensor):
                cond[k] = v
            else:
                if v.dim() == 5:
                    cond[k] = rearrange(v, "b c t h w -> (b t) c h w")
                elif v.dim() == 3 and v.shape[0] != total_n_frames:
                    cond[k] = rearrange(v, "b t c -> (b t) () c")
                else:
                    cond[k] = v
        return cond

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, strength=1.0):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc)

        x = rearrange(x, "b c h w -> () c b h w")
        cond = self.merge_cond_dict(cond, x.shape[2])
        uc = self.merge_cond_dict(uc, x.shape[2])
        total_n_frames = x.shape[2]
        latents, sigma_hat, sigma_next, cond, uc = self.prepare_latents(x, cond, uc, sigmas, num_sigmas)

        fifo_video_frames = []

        for i in self.get_sigma_gen(num_sigmas, total_n_frames):
            for rank in reversed(range(2 * self.num_partitions if self.lookahead else self.num_partitions)):
                start_idx = rank * (self.num_frames // 2) if self.lookahead else rank * self.num_frames
                midpoint_idx = start_idx + self.num_frames // 2
                end_idx = start_idx + self.num_frames

                chunk_x, sigma_hat_chunk, sigma_next_chunk, cond_chunk, uc_chunk = chunk_inputs(
                    latents, cond, uc, sigma_hat, sigma_next, start_idx, end_idx, self.num_frames
                )

                s_in = chunk_x.new_ones([chunk_x.shape[0]])

                out = self.sampler_step(
                    s_in * sigma_hat_chunk,
                    s_in * sigma_next_chunk,
                    denoiser,
                    chunk_x,
                    cond_chunk,
                    uc=uc_chunk,
                )
                if self.lookahead:
                    latents[:, :, midpoint_idx:end_idx] = rearrange(
                        out[-(self.num_frames // 2) :], "b c h w -> () c b h w"
                    )
                else:
                    latents[:, :, start_idx:end_idx] = rearrange(out, "b c h w -> () c b h w")
                del out

            first_frame_idx = self.num_frames // 2 if self.lookahead else 0
            latents = shift_latents(latents)
            fifo_video_frames.append(latents[:, :, [first_frame_idx]])

        return rearrange(torch.cat(fifo_video_frames, dim=2), "() c b h w -> b c h w")[-total_n_frames:]


class AncestralSampler(SingleStepDiffusionSampler):
    def __init__(self, eta=1.0, s_noise=1.0, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.eta = eta
        self.s_noise = s_noise
        self.noise_sampler = lambda x: torch.randn_like(x)

    def ancestral_euler_step(self, x, denoised, sigma, sigma_down):
        d = to_d(x, sigma, denoised)
        dt = append_dims(sigma_down - sigma, x.ndim)

        return self.euler_step(x, d, dt)

    def ancestral_step(self, x, sigma, next_sigma, sigma_up):
        x = torch.where(
            append_dims(next_sigma, x.ndim) > 0.0,
            x + self.noise_sampler(x) * self.s_noise * append_dims(sigma_up, x.ndim),
            x,
        )
        return x

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc, num_steps)

        for i in self.get_sigma_gen(num_sigmas):
            x = self.sampler_step(
                s_in * sigmas[i],
                s_in * sigmas[i + 1],
                denoiser,
                x,
                cond,
                uc,
            )

        return x


class LinearMultistepSampler(BaseDiffusionSampler):
    def __init__(
        self,
        order=4,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)

        self.order = order

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, **kwargs):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc, num_steps)

        ds = []
        sigmas_cpu = sigmas.detach().cpu().numpy()
        for i in self.get_sigma_gen(num_sigmas):
            sigma = s_in * sigmas[i]
            denoised = denoiser(*self.guider.prepare_inputs(x, sigma, cond, uc), **kwargs)
            denoised = self.guider(denoised, sigma)
            d = to_d(x, sigma, denoised)
            ds.append(d)
            if len(ds) > self.order:
                ds.pop(0)
            cur_order = min(i + 1, self.order)
            coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
            x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))

        return x


class EulerEDMSampler(EDMSampler):
    def possible_correction_step(self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc):
        return euler_step


class EulerEDMSamplerPlusPlus(EDMSampleCFGplusplus):
    def possible_correction_step(self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc):
        return euler_step


class HeunEDMSampler(EDMSampler):
    def possible_correction_step(self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc):
        if torch.sum(next_sigma) < 1e-14:
            # Save a network evaluation if all noise levels are 0
            return euler_step
        else:
            denoised = self.denoise(euler_step, denoiser, next_sigma, cond, uc)
            d_new = to_d(euler_step, next_sigma, denoised)
            d_prime = (d + d_new) / 2.0

            # apply correction if noise level is not 0
            x = torch.where(append_dims(next_sigma, x.ndim) > 0.0, x + d_prime * dt, euler_step)
            return x


class EulerAncestralSampler(AncestralSampler):
    def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc):
        sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta)
        denoised = self.denoise(x, denoiser, sigma, cond, uc)
        x = self.ancestral_euler_step(x, denoised, sigma, sigma_down)
        x = self.ancestral_step(x, sigma, next_sigma, sigma_up)

        return x


class DPMPP2SAncestralSampler(AncestralSampler):
    def get_variables(self, sigma, sigma_down):
        t, t_next = [to_neg_log_sigma(s) for s in (sigma, sigma_down)]
        h = t_next - t
        s = t + 0.5 * h
        return h, s, t, t_next

    def get_mult(self, h, s, t, t_next):
        mult1 = to_sigma(s) / to_sigma(t)
        mult2 = (-0.5 * h).expm1()
        mult3 = to_sigma(t_next) / to_sigma(t)
        mult4 = (-h).expm1()

        return mult1, mult2, mult3, mult4

    def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, **kwargs):
        sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta)
        denoised = self.denoise(x, denoiser, sigma, cond, uc)
        x_euler = self.ancestral_euler_step(x, denoised, sigma, sigma_down)

        if torch.sum(sigma_down) < 1e-14:
            # Save a network evaluation if all noise levels are 0
            x = x_euler
        else:
            h, s, t, t_next = self.get_variables(sigma, sigma_down)
            mult = [append_dims(mult, x.ndim) for mult in self.get_mult(h, s, t, t_next)]

            x2 = mult[0] * x - mult[1] * denoised
            denoised2 = self.denoise(x2, denoiser, to_sigma(s), cond, uc)
            x_dpmpp2s = mult[2] * x - mult[3] * denoised2

            # apply correction if noise level is not 0
            x = torch.where(append_dims(sigma_down, x.ndim) > 0.0, x_dpmpp2s, x_euler)

        x = self.ancestral_step(x, sigma, next_sigma, sigma_up)
        return x


class DPMPP2MSampler(BaseDiffusionSampler):
    def get_variables(self, sigma, next_sigma, previous_sigma=None):
        t, t_next = [to_neg_log_sigma(s) for s in (sigma, next_sigma)]
        h = t_next - t

        if previous_sigma is not None:
            h_last = t - to_neg_log_sigma(previous_sigma)
            r = h_last / h
            return h, r, t, t_next
        else:
            return h, None, t, t_next

    def get_mult(self, h, r, t, t_next, previous_sigma):
        mult1 = to_sigma(t_next) / to_sigma(t)
        mult2 = (-h).expm1()

        if previous_sigma is not None:
            mult3 = 1 + 1 / (2 * r)
            mult4 = 1 / (2 * r)
            return mult1, mult2, mult3, mult4
        else:
            return mult1, mult2

    def sampler_step(
        self,
        old_denoised,
        previous_sigma,
        sigma,
        next_sigma,
        denoiser,
        x,
        cond,
        uc=None,
    ):
        denoised = self.denoise(x, denoiser, sigma, cond, uc)

        h, r, t, t_next = self.get_variables(sigma, next_sigma, previous_sigma)
        mult = [append_dims(mult, x.ndim) for mult in self.get_mult(h, r, t, t_next, previous_sigma)]

        x_standard = mult[0] * x - mult[1] * denoised
        if old_denoised is None or torch.sum(next_sigma) < 1e-14:
            # Save a network evaluation if all noise levels are 0 or on the first step
            return x_standard, denoised
        else:
            denoised_d = mult[2] * denoised - mult[3] * old_denoised
            x_advanced = mult[0] * x - mult[1] * denoised_d

            # apply correction if noise level is not 0 and not first step
            x = torch.where(append_dims(next_sigma, x.ndim) > 0.0, x_advanced, x_standard)

        return x, denoised

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, **kwargs):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc, num_steps)

        old_denoised = None
        for i in self.get_sigma_gen(num_sigmas):
            x, old_denoised = self.sampler_step(
                old_denoised,
                None if i == 0 else s_in * sigmas[i - 1],
                s_in * sigmas[i],
                s_in * sigmas[i + 1],
                denoiser,
                x,
                cond,
                uc=uc,
            )

        return x