tomrb's picture
initial yolov8to
ab854b9

A newer version of the Gradio SDK is available: 5.12.0

Upgrade
metadata
comments: true
description: >-
  Guide for Validating YOLOv8 Models: Learn how to evaluate the performance of
  your YOLO models using validation settings and metrics with Python and CLI
  examples.
keywords: >-
  Ultralytics, YOLO Docs, YOLOv8, validation, model evaluation, hyperparameters,
  accuracy, metrics, Python, CLI

Val mode is used for validating a YOLOv8 model after it has been trained. In this mode, the model is evaluated on a validation set to measure its accuracy and generalization performance. This mode can be used to tune the hyperparameters of the model to improve its performance.

!!! tip "Tip"

* YOLOv8 models automatically remember their training settings, so you can validate a model at the same image size and on the original dataset easily with just `yolo val model=yolov8n.pt` or `model('yolov8n.pt').val()`

Usage Examples

Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the model retains it's training data and arguments as model attributes. See Arguments section below for a full list of export arguments.

!!! example ""

=== "Python"

    ```python
    from ultralytics import YOLO

    # Load a model
    model = YOLO('yolov8n.pt')  # load an official model
    model = YOLO('path/to/best.pt')  # load a custom model

    # Validate the model
    metrics = model.val()  # no arguments needed, dataset and settings remembered
    metrics.box.map    # map50-95
    metrics.box.map50  # map50
    metrics.box.map75  # map75
    metrics.box.maps   # a list contains map50-95 of each category
    ```
=== "CLI"

    ```bash
    yolo detect val model=yolov8n.pt  # val official model
    yolo detect val model=path/to/best.pt  # val custom model
    ```

Arguments

Validation settings for YOLO models refer to the various hyperparameters and configurations used to evaluate the model's performance on a validation dataset. These settings can affect the model's performance, speed, and accuracy. Some common YOLO validation settings include the batch size, the frequency with which validation is performed during training, and the metrics used to evaluate the model's performance. Other factors that may affect the validation process include the size and composition of the validation dataset and the specific task the model is being used for. It is important to carefully tune and experiment with these settings to ensure that the model is performing well on the validation dataset and to detect and prevent overfitting.

Key Value Description
data None path to data file, i.e. coco128.yaml
imgsz 640 size of input images as integer
batch 16 number of images per batch (-1 for AutoBatch)
save_json False save results to JSON file
save_hybrid False save hybrid version of labels (labels + additional predictions)
conf 0.001 object confidence threshold for detection
iou 0.6 intersection over union (IoU) threshold for NMS
max_det 300 maximum number of detections per image
half True use half precision (FP16)
device None device to run on, i.e. cuda device=0/1/2/3 or device=cpu
dnn False use OpenCV DNN for ONNX inference
plots False show plots during training
rect False rectangular val with each batch collated for minimum padding
split val dataset split to use for validation, i.e. 'val', 'test' or 'train'