File size: 10,082 Bytes
73fee5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn


class CustomTverskyLoss(nn.Module):
    def __init__(self, alpha=0.1, beta=0.9, size_average=True):
        super(CustomTverskyLoss, self).__init__()
        self.alpha = alpha
        self.beta = beta
        self.size_average = size_average

    def forward(self, inputs, targets, smooth=1):
        # If your model contains a sigmoid or equivalent activation layer, comment this line
        # inputs = F.sigmoid(inputs)

        # Check if the input tensors are of expected shape
        if inputs.shape != targets.shape:
            raise ValueError("Shape mismatch: inputs and targets must have the same shape")

        # Compute Tversky loss for each sample in the batch
        tversky_loss_values = []
        for input_sample, target_sample in zip(inputs, targets):
            # Flatten tensors for each sample
            input_sample = input_sample.view(-1)
            target_sample = target_sample.view(-1)

            # Calculate the true positives, false positives, and false negatives
            true_positives = (input_sample * target_sample).sum()
            false_positives = (input_sample * (1 - target_sample)).sum()
            false_negatives = ((1 - input_sample) * target_sample).sum()

            # Compute the Tversky index for each sample
            tversky_index = (true_positives + smooth) / (true_positives + self.alpha * false_positives + self.beta * false_negatives + smooth)

            tversky_loss_values.append(1 - tversky_index)

        # Convert list of Tversky loss values to a tensor
        tversky_loss_values = torch.stack(tversky_loss_values)

        # If you want the average loss over the batch to be returned
        if self.size_average:
            return tversky_loss_values.mean()
        else:
            # If you want individual losses for each sample in the batch
            return tversky_loss_values

class CustomDiceLoss(nn.Module):
    def __init__(self, weight=None, size_average=True):
        super(CustomDiceLoss, self).__init__()
        self.size_average = size_average
    def forward(self, inputs, targets, smooth=1):
        
        # If your model contains a sigmoid or equivalent activation layer, comment this line
        #inputs = F.sigmoid(inputs)       
      
        # Check if the input tensors are of expected shape
        if inputs.shape != targets.shape:
            raise ValueError("Shape mismatch: inputs and targets must have the same shape")

        # Compute Dice loss for each sample in the batch
        dice_loss_values = []
        for input_sample, target_sample in zip(inputs, targets):
            
            # Flatten tensors for each sample
            input_sample = input_sample.view(-1)
            target_sample = target_sample.view(-1)

            intersection = (input_sample * target_sample).sum()
            dice = (2. * intersection + smooth) / (input_sample.sum() + target_sample.sum() + smooth)
            
            dice_loss_values.append(1 - dice)

        # Convert list of Dice loss values to a tensor
        dice_loss_values = torch.stack(dice_loss_values)

        # If you want the average loss over the batch to be returned
        if self.size_average:
            return dice_loss_values.mean()
        else:
            # If you want individual losses for each sample in the batch
            return dice_loss_values

def smooth_heaviside(phi, alpha, epsilon):
    # Scale and shift phi for the sigmoid function
    scaled_phi = (phi - alpha) / epsilon
    
    # Apply the sigmoid function
    H = torch.sigmoid(scaled_phi)

    return H
def calc_Phi(variable, LSgrid):
    device = variable.device  # Get the device of the variable

    x0 = variable[0]
    y0 = variable[1]
    L = variable[2]
    t = variable[3]  # Constant thickness
    angle = variable[4]

    # Rotation
    st = torch.sin(angle)
    ct = torch.cos(angle)
    x1 = ct * (LSgrid[0][:, None].to(device) - x0) + st * (LSgrid[1][:, None].to(device) - y0) 
    y1 = -st * (LSgrid[0][:, None].to(device) - x0) + ct * (LSgrid[1][:, None].to(device) - y0)

    # Regularized hyperellipse equation
    a = L / 2  # Semi-major axis
    b = t / 2  # Constant semi-minor axis
    small_constant = 1e-9  # To avoid division by zero
    temp = ((x1 / (a + small_constant))**6) + ((y1 / (b + small_constant))**6)

    # # Ensuring the hyperellipse shape
    allPhi = 1 - (temp + small_constant)**(1/6)
    
    # # Call Heaviside function with allPhi
    alpha = torch.tensor(0.0, device=device, dtype=torch.float32)
    epsilon = torch.tensor(0.001, device=device, dtype=torch.float32)
    H_phi = smooth_heaviside(allPhi, alpha, epsilon)
    return allPhi, H_phi



# utils.py

import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from matplotlib.colors import TwoSlopeNorm

def preprocess_image(image_path, threshold_value=0.9, upscale=False, upscale_factor=2.0):
    image = Image.open(image_path).convert('L')
    image = image.point(lambda x: 255 if x > threshold_value * 255 else 0, '1')
    
    if upscale:
        image = image.resize(
            (int(image.width * upscale_factor), int(image.height * upscale_factor)),
            resample=Image.BICUBIC
        )
    
    return image

def run_model(model, image, conf=0.05, iou=0.5, imgsz=640):
    results = model(image, conf=conf, iou=iou, imgsz=imgsz)
    return results

def save_results(results, filename='results.jpg'):
    for r in results:
        im_array = r.plot(boxes=True, labels=False, line_width=1)
        im = Image.fromarray(im_array[..., ::-1])
        im.save(filename)

def process_results(results, input_image):
    diceloss = CustomDiceLoss()
    tverskyloss = CustomTverskyLoss()

    prediction_tensor = results[0].regression_preds.to('cpu').detach()
    input_image_array = np.array(input_image.convert('L'))
    input_image_array_tensor = torch.tensor(input_image_array) / 255.0
    input_image_array_tensor = 1.0 - input_image_array_tensor
    input_image_array_tensor = torch.flip(input_image_array_tensor, [0])
    
    for r in results:
        im_array = r.plot(boxes=True, labels=False, line_width=1)
        seg_result = Image.fromarray(im_array[..., ::-1])
    
    DH = input_image_array.shape[0] / min(input_image_array.shape[1], input_image_array.shape[0])
    DW = input_image_array.shape[1] / min(input_image_array.shape[1], input_image_array.shape[0])
    nelx = input_image_array.shape[1] - 1
    nely = input_image_array.shape[0] - 1
    
    x, y = torch.meshgrid(torch.linspace(0, DW, nelx+1), torch.linspace(0, DH, nely+1))
    LSgrid = torch.stack((x.flatten(), y.flatten()), dim=0)
    
    pred_bboxes = results[0].boxes.xyxyn.to('cpu').detach()
    constant_tensor_02 = torch.full((pred_bboxes.shape[0],), 0.2)
    constant_tensor_00 = torch.full((pred_bboxes.shape[0],), 0.001)
    
    xmax = torch.stack([pred_bboxes[:,2]*(DW*1.0), pred_bboxes[:,3]*(DH*1.0), pred_bboxes[:,2]*(DW*1.0), pred_bboxes[:,3]*(DH*1.0), constant_tensor_02], dim=1)
    xmin = torch.stack([pred_bboxes[:,0]*(DW*1.0), pred_bboxes[:,1]*(DH*1.0), pred_bboxes[:,0]*(DW*1.0), pred_bboxes[:,1]*(DH*1.0), constant_tensor_00], dim=1)
    
    unnormalized_preds = prediction_tensor * (xmax - xmin) + xmin
    
    x_center = (unnormalized_preds[:, 0] + unnormalized_preds[:, 2]) / 2
    y_center = (unnormalized_preds[:, 1] + unnormalized_preds[:, 3]) / 2
    
    L = torch.sqrt((unnormalized_preds[:, 0] - unnormalized_preds[:, 2])**2 + 
                (unnormalized_preds[:, 1] - unnormalized_preds[:, 3])**2)
    
    L = L + 1e-4
    t_1 = unnormalized_preds[:, 4]
    
    epsilon = 1e-10
    y_diff = unnormalized_preds[:, 3] - unnormalized_preds[:, 1] + epsilon
    x_diff = unnormalized_preds[:, 2] - unnormalized_preds[:, 0] + epsilon
    theta = torch.atan2(y_diff, x_diff)
    
    formatted_variables = torch.cat((x_center.unsqueeze(1), 
                        y_center.unsqueeze(1), 
                        L.unsqueeze(1), 
                        t_1.unsqueeze(1), 
                        theta.unsqueeze(1)), dim=1)
    
    pred_Phi, pred_H = calc_Phi(formatted_variables.T, LSgrid)
    
    sum_pred_H = torch.sum(pred_H.detach().cpu(), dim=1)
    sum_pred_H[sum_pred_H > 1] = 1
    
    final_H = np.flipud(sum_pred_H.detach().numpy().reshape((nely+1, nelx+1), order='F'))
    
    dice_loss = diceloss(torch.tensor(final_H.copy()), input_image_array_tensor)
    tversky_loss = tverskyloss(torch.tensor(final_H.copy()), input_image_array_tensor)
    
    return input_image_array_tensor, seg_result, pred_Phi, sum_pred_H, final_H, dice_loss, tversky_loss

def plot_results(input_image_array_tensor, seg_result, pred_Phi, sum_pred_H, final_H, dice_loss, tversky_loss, filename='combined_plots.png'):
    nelx = input_image_array_tensor.shape[1] - 1
    nely = input_image_array_tensor.shape[0] - 1
    fig, axes = plt.subplots(2, 2, figsize=(8, 8))
    
    axes[0, 0].imshow(input_image_array_tensor.squeeze(), origin='lower', cmap='gray_r')
    axes[0, 0].set_title('Input Image')
    axes[0, 0].axis('on')
    
    axes[0, 1].imshow(seg_result)
    axes[0, 1].set_title('Segmentation Result')
    axes[0, 1].axis('off')
    
    render_colors1 = ['yellow', 'g', 'r', 'c', 'm', 'y', 'black', 'orange', 'pink', 'cyan', 'slategrey', 'wheat', 'purple', 'mediumturquoise', 'darkviolet', 'orangered']
    for i, color in zip(range(0, pred_Phi.shape[1]), render_colors1*100):
        axes[1, 1].contourf(np.flipud(pred_Phi[:, i].numpy().reshape((nely+1, nelx+1), order='F')), [0, 1], colors=color)
    axes[1, 1].set_title('Prediction contours')
    axes[1, 1].set_aspect('equal')
    
    axes[1, 0].imshow(np.flipud(sum_pred_H.detach().numpy().reshape((nely+1, nelx+1), order='F')), origin='lower', cmap='gray_r')
    axes[1, 0].set_title('Prediction Projection')
    
    plt.subplots_adjust(hspace=0.3, wspace=0.01)
    
    plt.figtext(0.5, 0.05, f'Dice Loss: {dice_loss.item():.4f}', ha='center', fontsize=16)
    
    fig.savefig(filename, dpi=600)