Spaces:
Runtime error
Runtime error
File size: 2,573 Bytes
9bfe77c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import requests
from PIL import Image
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed")
model = VisionEncoderDecoderModel.from_pretrained("tomofi/trocr-captcha")
# load image examples
urls = [
'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nfcb5.png',
'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/p57fn.png',
'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w2yp7.png',
'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/pme86.png',
'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w4nfx.png',
'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nf8b8.png'
]
for idx, url in enumerate(urls):
image = Image.open(requests.get(url, stream=True).raw)
image.save(f"image_{idx}.png")
def process_image(image):
# prepare image
pixel_values = processor(image, return_tensors="pt").pixel_values
# generate (no beam search)
generated_ids = model.generate(pixel_values)
# decode
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
title = "TrOCR for Captcha"
description = "Demo for Microsoft's TrOCR, an encoder-decoder model consisting of an image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition (OCR) on single-text line images. This particular model is fine-tuned on IAM, a dataset of annotated handwritten images. To use it, simply upload a (single-text line) image or use one of the example images below and click 'submit'. Results will show up in a few seconds."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
examples =[["image_0.png"], ["image_1.png"], ["image_2.png"], ["image_3.png"], ["image_4.png"], ["image_5.png"]]
#css = """.output_image, .input_image {height: 600px !important}"""
iface = gr.Interface(fn=process_image,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Textbox(),
title=title,
description=description,
article=article,
examples=examples)
iface.launch(debug=True) |