Spaces:
Runtime error
Runtime error
File size: 27,175 Bytes
c310e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import cv2
import numpy as np
import pycocotools.mask as mask_utils
import torch
from maskrcnn_benchmark.utils.chars import char2num
import pyclipper
# from PIL import Image
from shapely import affinity
from shapely.geometry import Polygon as ShapePolygon
# transpose
FLIP_LEFT_RIGHT = 0
FLIP_TOP_BOTTOM = 1
def convert_2d_tuple(t):
a = []
for i in t:
a.extend(list(i))
return a
class Mask(object):
"""
This class is unfinished and not meant for use yet
It is supposed to contain the mask for an object as
a 2d tensor
"""
def __init__(self, masks, size, mode):
self.masks = masks
self.size = size
self.mode = mode
def transpose(self, method):
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
raise NotImplementedError(
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
)
width, height = self.size
if method == FLIP_LEFT_RIGHT:
dim = width
# idx = 2
elif method == FLIP_TOP_BOTTOM:
dim = height
# idx = 1
flip_idx = list(range(dim)[::-1])
flipped_masks = self.masks.index_select(dim, flip_idx)
return Mask(flipped_masks, self.size, self.mode)
def crop(self, box):
w, h = box[2] - box[0], box[3] - box[1]
cropped_masks = self.masks[:, box[1] : box[3], box[0] : box[2]]
return Mask(cropped_masks, size=(w, h), mode=self.mode)
def resize(self, size, *args, **kwargs):
pass
class SegmentationMask(object):
"""
This class stores the segmentations for all objects in the image
"""
def __init__(self, polygons, size, mode=None):
"""
Arguments:
polygons: a list of list of lists of numbers. The first
level of the list correspond to individual instances,
the second level to all the polygons that compose the
object, and the third level to the polygon coordinates.
"""
assert isinstance(polygons, list)
self.polygons = [Polygons(p, size, mode) for p in polygons]
self.size = size
self.mode = mode
def transpose(self, method):
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
raise NotImplementedError(
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
)
flipped = []
for polygon in self.polygons:
flipped.append(polygon.transpose(method))
return SegmentationMask(flipped, size=self.size, mode=self.mode)
def crop(self, box, keep_ind=None):
w, h = box[2] - box[0], box[3] - box[1]
if keep_ind is not None:
self.polygons = np.array(self.polygons)
self.polygons = self.polygons[keep_ind]
cropped = []
for polygon in self.polygons:
cropped.append(polygon.crop(box))
return SegmentationMask(cropped, size=(w, h), mode=self.mode)
def rotate(self, angle, r_c, start_h, start_w):
rotated = []
for polygon in self.polygons:
rotated.append(polygon.rotate(angle, r_c, start_h, start_w))
return SegmentationMask(rotated, size=(r_c[0] * 2, r_c[1] * 2), mode=self.mode)
def resize(self, size, *args, **kwargs):
scaled = []
for polygon in self.polygons:
scaled.append(polygon.resize(size, *args, **kwargs))
return SegmentationMask(scaled, size=size, mode=self.mode)
def set_size(self, size):
self.size = size
for polygon in self.polygons:
polygon.set_size(size)
def to(self, *args, **kwargs):
return self
def __getitem__(self, item):
if isinstance(item, (int, slice)):
selected_polygons = [self.polygons[item]]
else:
# advanced indexing on a single dimension
selected_polygons = []
if isinstance(item, torch.Tensor) and item.dtype == torch.bool:
item = item.nonzero()
item = item.squeeze(1) if item.numel() > 0 else item
item = item.tolist()
for i in item:
selected_polygons.append(self.polygons[i])
return SegmentationMask(selected_polygons, size=self.size, mode=self.mode)
def __iter__(self):
return iter(self.polygons)
def __repr__(self):
s = self.__class__.__name__ + "("
s += "num_instances={}, ".format(len(self.polygons))
s += "image_width={}, ".format(self.size[0])
s += "image_height={})".format(self.size[1])
return s
def size(self):
return self.size
def get_polygons(self):
return self.polygons
def to_np_polygon(self):
np_polygons = []
for polygon in self.polygons:
polys = polygon.get_polygons()
for poly in polys:
np_poly = poly.numpy()
np_polygons.append(np_poly)
return np_polygons
def convert_seg_map(self, labels, shrink_ratio, seg_size, ignore_difficult=True):
# width, height = self.size
# assert self.size[0] == seg_size[1]
# assert self.size[1] == seg_size[0]
height, width = seg_size[0], seg_size[1]
seg_map = np.zeros((1, height, width), dtype=np.uint8)
training_mask = np.ones((height, width), dtype=np.uint8)
for poly, label in zip(self.polygons, labels):
poly = poly.get_polygons()[0]
poly = poly.reshape((-1, 2)).numpy()
if ignore_difficult and label.item() == -1:
cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0)
continue
if poly.shape[0] < 4:
continue
p = ShapePolygon(poly)
if p.length == 0:
continue
try:
d = p.area * (1 - np.power(shrink_ratio, 2)) / p.length
except:
continue
subj = [tuple(s) for s in poly]
pco = pyclipper.PyclipperOffset()
pco.AddPath(subj, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
s = pco.Execute(-d)
if s == []:
cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0)
continue
out = convert_2d_tuple(s[0])
out = np.array(out).reshape(-1, 2)
cv2.fillPoly(seg_map[0, :, :], [out.astype(np.int32)], 1)
return seg_map, training_mask
class Polygons(object):
"""
This class holds a set of polygons that represents a single instance
of an object mask. The object can be represented as a set of
polygons
"""
def __init__(self, polygons, size, mode):
# assert isinstance(polygons, list), '{}'.format(polygons)
if isinstance(polygons, list):
polygons = [torch.as_tensor(p, dtype=torch.float32) for p in polygons]
elif isinstance(polygons, Polygons):
polygons = polygons.polygons
self.polygons = polygons
self.size = size
self.mode = mode
def transpose(self, method):
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
raise NotImplementedError(
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
)
flipped_polygons = []
width, height = self.size
if method == FLIP_LEFT_RIGHT:
dim = width
idx = 0
elif method == FLIP_TOP_BOTTOM:
dim = height
idx = 1
for poly in self.polygons:
p = poly.clone()
TO_REMOVE = 1
p[idx::2] = dim - poly[idx::2] - TO_REMOVE
flipped_polygons.append(p)
return Polygons(flipped_polygons, size=self.size, mode=self.mode)
def rotate(self, angle, r_c, start_h, start_w):
poly = self.polygons[0].numpy().reshape(-1, 2)
poly[:, 0] += start_w
poly[:, 1] += start_h
polys = ShapePolygon(poly)
r_polys = list(affinity.rotate(polys, angle, r_c).boundary.coords[:-1])
p = []
for r in r_polys:
p += list(r)
return Polygons([p], size=self.size, mode=self.mode)
def crop(self, box):
w, h = box[2] - box[0], box[3] - box[1]
# TODO chck if necessary
w = max(w, 1)
h = max(h, 1)
cropped_polygons = []
for poly in self.polygons:
p = poly.clone()
p[0::2] = p[0::2] - box[0] # .clamp(min=0, max=w)
p[1::2] = p[1::2] - box[1] # .clamp(min=0, max=h)
cropped_polygons.append(p)
return Polygons(cropped_polygons, size=(w, h), mode=self.mode)
def resize(self, size, *args, **kwargs):
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size))
if ratios[0] == ratios[1]:
ratio = ratios[0]
scaled_polys = [p * ratio for p in self.polygons]
return Polygons(scaled_polys, size, mode=self.mode)
ratio_w, ratio_h = ratios
scaled_polygons = []
for poly in self.polygons:
p = poly.clone()
p[0::2] *= ratio_w
p[1::2] *= ratio_h
scaled_polygons.append(p)
return Polygons(scaled_polygons, size=size, mode=self.mode)
def convert(self, mode):
width, height = self.size
if mode == "mask":
# print([p.numpy() for p in self.polygons])
try:
rles = mask_utils.frPyObjects(
[p.numpy() for p in self.polygons], height, width
)
except:
print([p.numpy() for p in self.polygons])
mask = torch.ones((height, width), dtype=torch.uint8)
return mask
rle = mask_utils.merge(rles)
mask = mask_utils.decode(rle)
mask = torch.from_numpy(mask)
# TODO add squeeze?
return mask
def set_size(self, size):
self.size = size
def get_polygons(self):
return self.polygons
def __repr__(self):
s = self.__class__.__name__ + "("
s += "num_polygons={}, ".format(len(self.polygons))
s += "image_width={}, ".format(self.size[0])
s += "image_height={}, ".format(self.size[1])
s += "mode={})".format(self.mode)
return s
class CharPolygons(object):
"""
This class holds a set of polygons that represents a single instance
of an object mask. The object can be represented as a set of
polygons
"""
def __init__(
self,
char_boxes,
word=None,
use_char_ann=False,
char_classes=None,
size=None,
mode=None,
char_num_classes=37,
):
if isinstance(char_boxes, CharPolygons):
if char_classes is None:
char_classes = char_boxes.char_classes
self.word = char_boxes.word
char_boxes = char_boxes.char_boxes
else:
if char_classes is None:
char_classes = [
torch.as_tensor(p[8], dtype=torch.float32) for p in char_boxes
]
char_boxes = [
torch.as_tensor(p[:8], dtype=torch.float32) for p in char_boxes
]
self.word = word
self.char_boxes = char_boxes
self.char_classes = char_classes
self.size = size
self.mode = mode
self.use_char_ann = use_char_ann
self.char_num_classes = char_num_classes
def transpose(self, method):
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
raise NotImplementedError(
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
)
flipped_polygons = []
width, height = self.size
if method == FLIP_LEFT_RIGHT:
dim = width
idx = 0
elif method == FLIP_TOP_BOTTOM:
dim = height
idx = 1
for char_box in self.char_boxes:
p = char_box.clone()
TO_REMOVE = 1
p[idx::2] = dim - char_box[idx::2] - TO_REMOVE
flipped_polygons.append(p)
return CharPolygons(
flipped_polygons,
word=self.word,
use_char_ann=self.use_char_ann,
char_classes=self.char_classes,
size=self.size,
mode=self.mode,
char_num_classes=self.char_num_classes,
)
def crop(self, box):
w, h = box[2] - box[0], box[3] - box[1]
# TODO chck if necessary
w = max(w, 1)
h = max(h, 1)
cropped_polygons = []
for char_box in self.char_boxes:
p = char_box.clone()
p[0::2] = p[0::2] - box[0] # .clamp(min=0, max=w)
p[1::2] = p[1::2] - box[1] # .clamp(min=0, max=h)
cropped_polygons.append(p)
return CharPolygons(
cropped_polygons,
word=self.word,
use_char_ann=self.use_char_ann,
char_classes=self.char_classes,
size=(w, h),
mode=self.mode,
char_num_classes=self.char_num_classes,
)
def rotate(self, angle, r_c, start_h, start_w):
r_polys = []
for poly in self.char_boxes:
poly = poly.numpy()
poly[0::2] += start_w
poly[1::2] += start_h
poly = ShapePolygon(np.array(poly).reshape(4, 2))
r_poly = np.array(
list(affinity.rotate(poly, angle, r_c).boundary.coords[:-1])
).reshape(-1, 8)
r_polys.append(r_poly[0])
return CharPolygons(
r_polys,
word=self.word,
use_char_ann=self.use_char_ann,
char_classes=self.char_classes,
size=(r_c[0] * 2, r_c[1] * 2),
mode=self.mode,
char_num_classes=self.char_num_classes,
)
def resize(self, size, *args, **kwargs):
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size))
if ratios[0] == ratios[1]:
ratio = ratios[0]
scaled_polys = [p * ratio for p in self.char_boxes]
return CharPolygons(
scaled_polys,
word=self.word,
use_char_ann=self.use_char_ann,
char_classes=self.char_classes,
size=size,
mode=self.mode,
char_num_classes=self.char_num_classes,
)
ratio_w, ratio_h = ratios
scaled_polygons = []
for poly in self.char_boxes:
p = poly.clone()
p[0::2] *= ratio_w
p[1::2] *= ratio_h
scaled_polygons.append(p)
return CharPolygons(
scaled_polygons,
word=self.word,
use_char_ann=self.use_char_ann,
char_classes=self.char_classes,
size=size,
mode=self.mode,
char_num_classes=self.char_num_classes,
)
def set_size(self, size):
self.size = size
def convert(self, mode):
width, height = self.size
if mode == "char_mask":
if not self.use_char_ann:
char_map = -np.ones((height, width))
char_map_weight = np.zeros((self.char_num_classes,))
else:
char_map = np.zeros((height, width))
char_map_weight = np.ones((self.char_num_classes,))
for i, p in enumerate(self.char_boxes):
poly = p.numpy().reshape(4, 2)
poly = shrink_poly(poly, 0.25)
cv2.fillPoly(
char_map, [poly.astype(np.int32)], int(self.char_classes[i])
)
pos_index = np.where(char_map > 0)
pos_num = pos_index[0].size
if pos_num > 0:
pos_weight = 1.0 * (height * width - pos_num) / pos_num
char_map_weight[1:] = pos_weight
return torch.from_numpy(char_map), torch.from_numpy(char_map_weight)
elif mode == "seq_char_mask":
decoder_target = self.char_num_classes * np.ones((32,))
word_target = -np.ones((32,))
if not self.use_char_ann:
char_map = -np.ones((height, width))
char_map_weight = np.zeros((self.char_num_classes,))
for i, char in enumerate(self.word):
if i > 31:
break
decoder_target[i] = char2num(char)
word_target[i] = char2num(char)
end_point = min(max(1, len(self.word)), 31)
word_target[end_point] = self.char_num_classes
else:
char_map = np.zeros((height, width))
char_map_weight = np.ones((self.char_num_classes,))
word_length = 0
for i, p in enumerate(self.char_boxes):
poly = p.numpy().reshape(4, 2)
if i < 32:
decoder_target[i] = int(self.char_classes[i])
word_target[i] = int(self.char_classes[i])
word_length += 1
poly = shrink_poly(poly, 0.25)
cv2.fillPoly(
char_map, [poly.astype(np.int32)], int(self.char_classes[i])
)
end_point = min(max(1, word_length), 31)
word_target[end_point] = self.char_num_classes
pos_index = np.where(char_map > 0)
pos_num = pos_index[0].size
if pos_num > 0:
pos_weight = 1.0 * (height * width - pos_num) / pos_num
char_map_weight[1:] = pos_weight
return (
torch.from_numpy(char_map),
torch.from_numpy(char_map_weight),
torch.from_numpy(decoder_target),
torch.from_numpy(word_target),
)
def creat_color_map(self, n_class, width):
splits = int(np.ceil(np.power((n_class * 1.0), 1.0 / 3)))
maps = []
for i in range(splits):
r = int(i * width * 1.0 / (splits - 1))
for j in range(splits):
g = int(j * width * 1.0 / (splits - 1))
for k in range(splits - 1):
b = int(k * width * 1.0 / (splits - 1))
maps.append([r, g, b])
return np.array(maps)
def __repr__(self):
s = self.__class__.__name__ + "("
s += "num_char_boxes={}, ".format(len(self.char_boxes))
s += "num_char_classes={}, ".format(len(self.char_classes))
s += "image_width={}, ".format(self.size[0])
s += "image_height={}, ".format(self.size[1])
s += "mode={})".format(self.mode)
return s
class SegmentationCharMask(object):
def __init__(
self, chars_boxes, words=None, use_char_ann=True, size=None, mode=None, char_num_classes=37
):
# self.chars_boxes=[CharPolygons(char_boxes, word=word, use_char_ann=use_char_ann, size=size, mode=mode) for char_boxes, word in zip(chars_boxes, words)]
if words is None:
self.chars_boxes = [
CharPolygons(
char_boxes,
word=None,
use_char_ann=use_char_ann,
size=size,
mode=mode,
char_num_classes=char_num_classes,
)
for char_boxes in chars_boxes
]
else:
self.chars_boxes = [
CharPolygons(
char_boxes,
word=words[i],
use_char_ann=use_char_ann,
size=size,
mode=mode,
char_num_classes=char_num_classes,
)
for i, char_boxes in enumerate(chars_boxes)
]
self.size = size
self.mode = mode
self.use_char_ann = use_char_ann
self.char_num_classes = char_num_classes
def transpose(self, method):
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
raise NotImplementedError(
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
)
flipped = []
for char_boxes in self.chars_boxes:
flipped.append(char_boxes.transpose(method))
return SegmentationCharMask(
flipped, use_char_ann=self.use_char_ann, size=self.size, mode=self.mode, char_num_classes=self.char_num_classes
)
def crop(self, box, keep_ind):
cropped = []
w, h = box[2] - box[0], box[3] - box[1]
if keep_ind is not None:
self.chars_boxes = np.array(self.chars_boxes)
self.chars_boxes = self.chars_boxes[keep_ind]
for char_boxes in self.chars_boxes:
cropped.append(char_boxes.crop(box))
return SegmentationCharMask(
cropped, use_char_ann=self.use_char_ann, size=(w, h), mode=self.mode
)
def resize(self, size, *args, **kwargs):
scaled = []
for char_boxes in self.chars_boxes:
scaled.append(char_boxes.resize(size, *args, **kwargs))
return SegmentationCharMask(
scaled, use_char_ann=self.use_char_ann, size=size, mode=self.mode, char_num_classes=self.char_num_classes
)
def set_size(self, size):
self.size = size
for char_box in self.chars_boxes:
char_box.set_size(size)
def rotate(self, angle, r_c, start_h, start_w):
rotated = []
for char_boxes in self.chars_boxes:
rotated.append(char_boxes.rotate(angle, r_c, start_h, start_w))
return SegmentationCharMask(
rotated,
use_char_ann=self.use_char_ann,
size=(r_c[0] * 2, r_c[1] * 2),
mode=self.mode,
char_num_classes=self.char_num_classes,
)
def __iter__(self):
return iter(self.chars_boxes)
def __getitem__(self, item):
if isinstance(item, (int, slice)):
selected_chars_boxes = [self.chars_boxes[item]]
else:
# advanced indexing on a single dimension
selected_chars_boxes = []
if isinstance(item, torch.Tensor) and item.dtype == torch.bool:
item = item.nonzero()
item = item.squeeze(1) if item.numel() > 0 else item
item = item.tolist()
for i in item:
if i >= len(self.chars_boxes):
print(i)
print("chars_boxes.shape: ", len(self.chars_boxes))
input()
selected_chars_boxes.append(self.chars_boxes[i])
return SegmentationCharMask(
selected_chars_boxes,
use_char_ann=self.use_char_ann,
size=self.size,
mode=self.mode,
char_num_classes=self.char_num_classes,
)
def __repr__(self):
s = self.__class__.__name__ + "("
s += "num_char_boxes={}, ".format(len(self.chars_boxes))
s += "image_width={}, ".format(self.size[0])
s += "image_height={})".format(self.size[1])
return s
def shrink_poly(poly, shrink):
# shrink ratio
R = shrink
r = [None, None, None, None]
for i in range(4):
r[i] = min(
np.linalg.norm(poly[i] - poly[(i + 1) % 4]),
np.linalg.norm(poly[i] - poly[(i - 1) % 4]),
)
# find the longer pair
if np.linalg.norm(poly[0] - poly[1]) + np.linalg.norm(
poly[2] - poly[3]
) > np.linalg.norm(poly[0] - poly[3]) + np.linalg.norm(poly[1] - poly[2]):
# first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)
## p0, p1
theta = np.arctan2((poly[1][1] - poly[0][1]), (poly[1][0] - poly[0][0]))
poly[0][0] += R * r[0] * np.cos(theta)
poly[0][1] += R * r[0] * np.sin(theta)
poly[1][0] -= R * r[1] * np.cos(theta)
poly[1][1] -= R * r[1] * np.sin(theta)
## p2, p3
theta = np.arctan2((poly[2][1] - poly[3][1]), (poly[2][0] - poly[3][0]))
poly[3][0] += R * r[3] * np.cos(theta)
poly[3][1] += R * r[3] * np.sin(theta)
poly[2][0] -= R * r[2] * np.cos(theta)
poly[2][1] -= R * r[2] * np.sin(theta)
## p0, p3
theta = np.arctan2((poly[3][0] - poly[0][0]), (poly[3][1] - poly[0][1]))
poly[0][0] += R * r[0] * np.sin(theta)
poly[0][1] += R * r[0] * np.cos(theta)
poly[3][0] -= R * r[3] * np.sin(theta)
poly[3][1] -= R * r[3] * np.cos(theta)
## p1, p2
theta = np.arctan2((poly[2][0] - poly[1][0]), (poly[2][1] - poly[1][1]))
poly[1][0] += R * r[1] * np.sin(theta)
poly[1][1] += R * r[1] * np.cos(theta)
poly[2][0] -= R * r[2] * np.sin(theta)
poly[2][1] -= R * r[2] * np.cos(theta)
else:
## p0, p3
# print poly
theta = np.arctan2((poly[3][0] - poly[0][0]), (poly[3][1] - poly[0][1]))
poly[0][0] += R * r[0] * np.sin(theta)
poly[0][1] += R * r[0] * np.cos(theta)
poly[3][0] -= R * r[3] * np.sin(theta)
poly[3][1] -= R * r[3] * np.cos(theta)
## p1, p2
theta = np.arctan2((poly[2][0] - poly[1][0]), (poly[2][1] - poly[1][1]))
poly[1][0] += R * r[1] * np.sin(theta)
poly[1][1] += R * r[1] * np.cos(theta)
poly[2][0] -= R * r[2] * np.sin(theta)
poly[2][1] -= R * r[2] * np.cos(theta)
## p0, p1
theta = np.arctan2((poly[1][1] - poly[0][1]), (poly[1][0] - poly[0][0]))
poly[0][0] += R * r[0] * np.cos(theta)
poly[0][1] += R * r[0] * np.sin(theta)
poly[1][0] -= R * r[1] * np.cos(theta)
poly[1][1] -= R * r[1] * np.sin(theta)
## p2, p3
theta = np.arctan2((poly[2][1] - poly[3][1]), (poly[2][0] - poly[3][0]))
poly[3][0] += R * r[3] * np.cos(theta)
poly[3][1] += R * r[3] * np.sin(theta)
poly[2][0] -= R * r[2] * np.cos(theta)
poly[2][1] -= R * r[2] * np.sin(theta)
return poly
def shrink_rect(poly, shrink):
xmin = min(poly[:, 0])
xmax = max(poly[:, 0])
ymin = min(poly[:, 1])
ymax = max(poly[:, 1])
# assert xmax > xmin and ymax > ymin
xc = (xmax + xmin) / 2
yc = (ymax + ymin) / 2
w = xmax - xmin
h = ymax - ymin
sxmin = xc - w / 2 * shrink
sxmax = xc + w / 2 * shrink
symin = yc - h / 2 * shrink
symax = yc + h / 2 * shrink
return np.array([sxmin, symin, sxmax, symin, sxmax, symax, sxmin, symax]).reshape(
(4, 2)
)
def is_poly_inbox(poly, height, width):
min_x = min(poly[:, 0])
min_y = min(poly[:, 1])
max_x = max(poly[:, 0])
max_y = max(poly[:, 1])
if (max_x < 0 and max_y < 0) or (min_x > width and min_y > height):
return False
else:
return True
|