File size: 24,031 Bytes
c310e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import datetime
import logging
import os
import pickle
import subprocess
import time

import cv2
import numpy as np
import torch
from maskrcnn_benchmark.utils.chars import char2num, get_tight_rect, getstr_grid
from PIL import Image, ImageDraw
from tqdm import tqdm

from ..utils.comm import is_main_process, scatter_gather, synchronize
import pdb

# TO DO: format output with dictionnary
def compute_on_dataset(model, data_loader, device, cfg):
    model.eval()
    results_dict = {}
    seg_results = []
    cpu_device = torch.device("cpu")
    total_time = 0
    for _, batch in tqdm(enumerate(data_loader)):
        images, targets, image_paths = batch
        images = images.to(device)
        with torch.no_grad():
            if cfg.MODEL.SEG_ON:
                predictions, proposals, seg_results_dict = model(
                    images
                )
                seg_results.append(
                    [image_paths, proposals, seg_results_dict['rotated_boxes'], seg_results_dict['polygons'], seg_results_dict['preds'], seg_results_dict['scores']]
                ) 
                # if cfg.MODEL.MASK_ON and predictions is not None:
                if predictions is not None:
                    if cfg.MODEL.CHAR_MASK_ON or cfg.SEQUENCE.SEQ_ON:
                        global_predictions = predictions[0]
                        char_predictions = predictions[1]
                        char_mask = char_predictions["char_mask"]
                        boxes = char_predictions["boxes"]
                        seq_words = char_predictions["seq_outputs"]
                        seq_scores = char_predictions["seq_scores"]
                        detailed_seq_scores = char_predictions["detailed_seq_scores"]
                        global_predictions = [o.to(cpu_device) for o in global_predictions]
                        results_dict.update(
                            {
                                image_paths[0]: [
                                    global_predictions[0],
                                    char_mask,
                                    boxes,
                                    seq_words,
                                    seq_scores,
                                    detailed_seq_scores,
                                ]
                            }
                        )
                    else:
                        global_predictions = [o.to(cpu_device) for o in predictions]
                        results_dict.update(
                            {
                                image_paths[0]: [
                                    global_predictions[0],
                                ]
                            }
                        )
            else:
                predictions = model(images)
                if predictions is not None:
                    if not (cfg.MODEL.CHAR_MASK_ON and cfg.SEQUENCE.SEQ_ON):
                        global_predictions = predictions
                        global_predictions = [o.to(cpu_device) for o in global_predictions]
                        results_dict.update(
                            {
                                image_paths[0]: [
                                    global_predictions[0],
                                ]
                            }
                        )
                    else:
                        global_predictions = predictions[0]
                        char_predictions = predictions[1]
                        if cfg.MODEL.CHAR_MASK_ON:
                            char_mask = char_predictions["char_mask"]
                        else:
                            char_mask = None
                        boxes = char_predictions["boxes"]
                        seq_words = char_predictions["seq_outputs"]
                        seq_scores = char_predictions["seq_scores"]
                        detailed_seq_scores = char_predictions["detailed_seq_scores"]
                        global_predictions = [o.to(cpu_device) for o in global_predictions]
                        results_dict.update(
                            {
                                image_paths[0]: [
                                    global_predictions[0],
                                    char_mask,
                                    boxes,
                                    seq_words,
                                    seq_scores,
                                    detailed_seq_scores,
                                ]
                            }
                        )
    return results_dict, seg_results


def polygon2rbox(polygon, image_height, image_width):
    poly = np.array(polygon).reshape((-1, 2))
    rect = cv2.minAreaRect(poly)
    corners = cv2.boxPoints(rect)
    corners = np.array(corners, dtype="int")
    pts = get_tight_rect(corners, 0, 0, image_height, image_width, 1)
    pts = list(map(int, pts))
    return pts


def mask2polygon(mask, box, im_size, threshold=0.5, output_folder=None):
    # mask 32*128
    image_width, image_height = im_size[0], im_size[1]
    box_h = box[3] - box[1]
    box_w = box[2] - box[0]
    cls_polys = (mask * 255).astype(np.uint8)
    poly_map = np.array(Image.fromarray(cls_polys).resize((box_w, box_h)))
    poly_map = poly_map.astype(np.float32) / 255
    poly_map = cv2.GaussianBlur(poly_map, (3, 3), sigmaX=3)
    ret, poly_map = cv2.threshold(poly_map, threshold, 1, cv2.THRESH_BINARY)
    if "total_text" in output_folder or "cute80" in output_folder:
        SE1 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
        poly_map = cv2.erode(poly_map, SE1)
        poly_map = cv2.dilate(poly_map, SE1)
        poly_map = cv2.morphologyEx(poly_map, cv2.MORPH_CLOSE, SE1)
        try:
            _, contours, _ = cv2.findContours(
                (poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE
            )
        except:
            contours, _ = cv2.findContours(
                (poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE
            )
        if len(contours) == 0:
            # print(contours)
            # print(len(contours))
            return None
        max_area = 0
        max_cnt = contours[0]
        for cnt in contours:
            area = cv2.contourArea(cnt)
            if area > max_area:
                max_area = area
                max_cnt = cnt
        # perimeter = cv2.arcLength(max_cnt, True)
        epsilon = 0.01 * cv2.arcLength(max_cnt, True)
        approx = cv2.approxPolyDP(max_cnt, epsilon, True)
        pts = approx.reshape((-1, 2))
        pts[:, 0] = pts[:, 0] + box[0]
        pts[:, 1] = pts[:, 1] + box[1]
        polygon = list(pts.reshape((-1,)))
        polygon = list(map(int, polygon))
        if len(polygon) < 6:
            return None
    else:
        SE1 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
        poly_map = cv2.erode(poly_map, SE1)
        poly_map = cv2.dilate(poly_map, SE1)
        poly_map = cv2.morphologyEx(poly_map, cv2.MORPH_CLOSE, SE1)
        idy, idx = np.where(poly_map == 1)
        xy = np.vstack((idx, idy))
        xy = np.transpose(xy)
        hull = cv2.convexHull(xy, clockwise=True)
        # reverse order of points.
        if hull is None:
            return None
        hull = hull[::-1]
        # find minimum area bounding box.
        rect = cv2.minAreaRect(hull)
        corners = cv2.boxPoints(rect)
        corners = np.array(corners, dtype="int")
        pts = get_tight_rect(corners, box[0], box[1], image_height, image_width, 1)
        polygon = [x * 1.0 for x in pts]
        polygon = list(map(int, polygon))
    return polygon


def _accumulate_predictions_from_multiple_gpus(predictions_per_gpu):
    all_predictions = scatter_gather(predictions_per_gpu)
    if not is_main_process():
        return
    # merge the list of dicts
    predictions = {}
    for p in all_predictions:
        predictions.update(p)
    return predictions


def format_output(out_dir, boxes, img_name):
    with open(
        os.path.join(out_dir, "res_" + img_name.split(".")[0] + ".txt"), "wt"
    ) as res:
        ## char score save dir
        ssur_name = os.path.join(out_dir, "res_" + img_name.split(".")[0])
        for i, box in enumerate(boxes):
            save_name = ssur_name + "_" + str(i) + ".pkl"
            save_dict = {}
            if "total_text" in out_dir or "cute80" in out_dir:
                # np.save(save_name, box[-2])
                save_dict["seg_char_scores"] = box[-3]
                save_dict["seq_char_scores"] = box[-2]
                box = (
                    ",".join([str(x) for x in box[:4]])
                    + ";"
                    + ",".join([str(x) for x in box[4 : 4 + int(box[-1])]])
                    + ";"
                    + ",".join([str(x) for x in box[4 + int(box[-1]) : -3]])
                    + ","
                    + save_name
                )
            else:
                save_dict["seg_char_scores"] = box[-2]
                save_dict["seq_char_scores"] = box[-1]
                np.save(save_name, box[-1])
                box = ",".join([str(x) for x in box[:-2]]) + "," + save_name
            with open(save_name, "wb") as f:
                pickle.dump(save_dict, f, protocol=2)
            res.write(box + "\n")

def format_seg_output(results_dir, rotated_boxes_this_image, polygons_this_image, scores, img_name, ratio):
    height_ratio, width_ratio = ratio
    with open(
        os.path.join(results_dir, "res_" + img_name.split(".")[0] + ".txt"), "wt"
    ) as res:
        if "total_text" in results_dir or "cute80" in results_dir:
            for i, box in enumerate(polygons_this_image):
                box = box[0]
                box[0::2] = box[0::2] * width_ratio
                box[1::2] = box[1::2] * height_ratio
                save_dict = {}
                # result = ",".join([str(int(x[0])) + ',' +str(int(x[1])) for x in box])
                result = ",".join([str(int(x)) for x in box])
                score = scores[i].item()
                res.write(result + ',' + str(score) + "\n")
        else:
            for i, box in enumerate(rotated_boxes_this_image):
                box[0::2] = box[0::2] * width_ratio
                box[1::2] = box[1::2] * height_ratio
                save_dict = {}
                result = ",".join([str(int(x[0])) + ',' +str(int(x[1])) for x in box])
                score = scores[i].item()
                res.write(result + ',' + str(score) + "\n")



def process_char_mask(char_masks, boxes, threshold=192):
    texts, rec_scores, rec_char_scores, char_polygons = [], [], [], []
    for index in range(char_masks.shape[0]):
        box = list(boxes[index])
        box = list(map(int, box))
        text, rec_score, rec_char_score, char_polygon = getstr_grid(
            char_masks[index, :, :, :].copy(), box, threshold=threshold
        )
        texts.append(text)
        rec_scores.append(rec_score)
        rec_char_scores.append(rec_char_score)
        char_polygons.append(char_polygon)
        # segmss.append(segms)
    return texts, rec_scores, rec_char_scores, char_polygons


def creat_color_map(n_class, width):
    splits = int(np.ceil(np.power((n_class * 1.0), 1.0 / 3)))
    maps = []
    for i in range(splits):
        r = int(i * width * 1.0 / (splits - 1))
        for j in range(splits):
            g = int(j * width * 1.0 / (splits - 1))
            for k in range(splits - 1):
                b = int(k * width * 1.0 / (splits - 1))
                maps.append((r, g, b, 200))
    return maps


def visualization(image, polygons, resize_ratio, colors, char_polygons=None, words=None):
    draw = ImageDraw.Draw(image, "RGBA")
    for polygon in polygons:
        # draw.polygon(polygon, fill=None, outline=(0, 255, 0, 255))
        # print(polygon)
        polygon.append(polygon[0])
        polygon.append(polygon[1])
        # print(polygon)
        color = '#33FF33'
        draw.line(polygon, fill=color, width=5)
    # if char_polygons is not None:
    #     for i, char_polygon in enumerate(char_polygons):
    #         for j, polygon in enumerate(char_polygon):
    #             polygon = [int(x * resize_ratio) for x in polygon]
    #             char = words[i][j]
    #             color = colors[char2num(char)]
    #             draw.polygon(polygon, fill=color, outline=color)


def vis_seg_map(image_path, seg_map, rotated_boxes, polygons_this_image, proposals, vis_dir):
    img_name = image_path.split("/")[-1]
    image = cv2.imread(image_path)
    height, width, _ = image.shape
    seg_map = seg_map.data.cpu().numpy()
    img = Image.fromarray(image).convert("RGB")
    # height_ratio = height / seg_map.shape[1]
    # width_ratio = width / seg_map.shape[2]
    # print('seg_map.shape:', seg_map.shape)
    # print('image.shape:', image.shape)
    seg_image = (
        Image.fromarray((seg_map[0, :proposals.size[1], :proposals.size[0]] * 255).astype(np.uint8))
        .convert("RGB")
        .resize((width, height))
    )
    visu_image = Image.blend(seg_image, img, 0.5)
    img_draw = ImageDraw.Draw(visu_image)
    if "total_text" in vis_dir or "cute80" in vis_dir:
        for box in polygons_this_image:
            # box[:, 0] = box[:, 0]
            # box[:, 1] = box[:, 1]
            tuple_box = [tuple(x) for x in box[0].reshape(-1, 2).tolist()]
            tuple_box.append(tuple_box[0])
            img_draw.line(tuple_box, fill=(0, 255, 0), width=5)
    else:
        for box in rotated_boxes:
            # box[:, 0] = box[:, 0]
            # box[:, 1] = box[:, 1]
            tuple_box = [tuple(x) for x in box.tolist()]
            tuple_box.append(tuple_box[0])
            img_draw.line(tuple_box, fill=(0, 255, 0), width=5)
    visu_image.save(vis_dir + "/seg_" + img_name)


def prepare_results_for_evaluation(

    predictions, output_folder, model_name, seg_predictions=None, vis=False, cfg=None

):
    results_dir = os.path.join(output_folder, model_name + "_results")
    if not os.path.isdir(results_dir):
        os.mkdir(results_dir)
    seg_results_dir = os.path.join(output_folder, model_name + "_seg_results")
    if not os.path.isdir(seg_results_dir):
        os.mkdir(seg_results_dir)
    if vis:
        visu_dir = os.path.join(output_folder, model_name + "_visu")
        if not os.path.isdir(visu_dir):
            os.mkdir(visu_dir)
        seg_visu_dir = os.path.join(output_folder, model_name + "_seg_visu")
        if not os.path.isdir(seg_visu_dir):
            os.mkdir(seg_visu_dir)
    if len(seg_predictions) > 0:
        for seg_prediction in seg_predictions:
            image_paths, proposals, rotated_boxes, polygons, seg_maps, seg_scores = (
                seg_prediction[0],
                seg_prediction[1],
                seg_prediction[2],
                seg_prediction[3],
                seg_prediction[4],
                seg_prediction[5],
            )
            for batch_id in range(len(image_paths)):
                image_path = image_paths[batch_id]
                im_name = image_path.split("/")[-1]
                image = cv2.imread(image_path)
                height, width, _ = image.shape
                rotated_boxes_this_image = rotated_boxes[batch_id]
                polygons_this_image = polygons[batch_id]
                proposals_this_image = proposals[batch_id]
                seg_map = seg_maps[batch_id]
                seg_score = seg_scores[batch_id]
                height, width, _ = image.shape
                height_ratio = height / proposals_this_image.size[1]
                width_ratio = width / proposals_this_image.size[0]
                format_seg_output(seg_results_dir, rotated_boxes_this_image, polygons_this_image, seg_score, im_name, (height_ratio, width_ratio))
                if vis:
                    vis_seg_map(image_path, seg_map, rotated_boxes_this_image, polygons_this_image, proposals_this_image, seg_visu_dir)
    if (not cfg.MODEL.TRAIN_DETECTION_ONLY):
        for image_path, prediction in predictions.items():
            im_name = image_path.split("/")[-1]
            if cfg.MODEL.CHAR_MASK_ON or cfg.SEQUENCE.SEQ_ON:
                global_prediction, char_mask, boxes_char, seq_words, seq_scores, detailed_seq_scores = (
                    prediction[0],
                    prediction[1],
                    prediction[2],
                    prediction[3],
                    prediction[4],
                    prediction[5],
                )
                if char_mask is not None:
                    words, rec_scores, rec_char_scoress, char_polygons = process_char_mask(
                        char_mask, boxes_char
                    )
            else:
                global_prediction = prediction[0]
            test_image_width, test_image_height = global_prediction.size
            img = Image.open(image_path)
            width, height = img.size
            resize_ratio = float(height) / test_image_height
            global_prediction = global_prediction.resize((width, height))
            boxes = global_prediction.bbox.tolist()
            if cfg.MODEL.ROI_BOX_HEAD.INFERENCE_USE_BOX:
                scores = global_prediction.get_field("scores").tolist()
            if not cfg.MODEL.SEG.USE_SEG_POLY:
                masks = global_prediction.get_field("mask").cpu().numpy()
            else:
                masks = global_prediction.get_field("masks").get_polygons()
            result_logs = []
            polygons = []
            for k, box in enumerate(boxes):
                if box[2] - box[0] < 1 or box[3] - box[1] < 1:
                    continue
                box = list(map(int, box))
                if not cfg.MODEL.SEG.USE_SEG_POLY:
                    mask = masks[k, 0, :, :]
                    polygon = mask2polygon(
                        mask, box, img.size, threshold=0.5, output_folder=output_folder
                    )
                else:
                    polygon = list(masks[k].get_polygons()[0].cpu().numpy())
                    if not ("total_text" in output_folder or "cute80" in output_folder):
                        polygon = polygon2rbox(polygon, height, width)
                if polygon is None:
                    polygon = [
                        box[0],
                        box[1],
                        box[2],
                        box[1],
                        box[2],
                        box[3],
                        box[0],
                        box[3],
                    ]
                    continue
                polygons.append(polygon)
                if cfg.MODEL.ROI_BOX_HEAD.INFERENCE_USE_BOX:
                    score = scores[k]
                else:
                    score = 1.0
                if cfg.MODEL.CHAR_MASK_ON or cfg.SEQUENCE.SEQ_ON:
                    if char_mask is None:
                        word = 'aaa'
                        rec_score = 1.0
                        char_score = None
                    else:
                        word = words[k]
                        rec_score = rec_scores[k]
                        char_score = rec_char_scoress[k]
                    seq_word = seq_words[k]
                    seq_char_scores = seq_scores[k]
                    seq_score = sum(seq_char_scores) / float(len(seq_char_scores))
                    detailed_seq_score = detailed_seq_scores[k]
                    detailed_seq_score = np.squeeze(np.array(detailed_seq_score), axis=1)
                else:
                    word = 'aaa'
                    rec_score = 1.0
                    char_score = [1.0, 1.0, 1.0]
                    seq_word = 'aaa'
                    seq_char_scores = [1.0, 1.0, 1.0]
                    seq_score = 1.0
                    detailed_seq_score = None
                if "total_text" in output_folder or "cute80" in output_folder:
                    result_log = (
                        [int(x * 1.0) for x in box[:4]]
                        + polygon
                        + [word]
                        + [seq_word]
                        + [score]
                        + [rec_score]
                        + [seq_score]
                        + [char_score]
                        + [detailed_seq_score]
                        + [len(polygon)]
                    )
                else:
                    result_log = (
                        [int(x * 1.0) for x in box[:4]]
                        + polygon
                        + [word]
                        + [seq_word]
                        + [score]
                        + [rec_score]
                        + [seq_score]
                        + [char_score]
                        + [detailed_seq_score]
                    )
                result_logs.append(result_log)
            if vis:
                colors = creat_color_map(37, 255)
                if cfg.MODEL.CHAR_MASK_ON:
                    visualization(img, polygons, resize_ratio, colors, char_polygons, words)
                else:
                    visualization(img, polygons, resize_ratio, colors)
                img.save(os.path.join(visu_dir, im_name))
            format_output(results_dir, result_logs, im_name)


def inference(

    model,

    data_loader,

    iou_types=("bbox",),

    box_only=False,

    device="cuda",

    expected_results=(),

    expected_results_sigma_tol=4,

    output_folder=None,

    model_name=None,

    cfg=None,

):

    # convert to a torch.device for efficiency
    model_name = model_name.split(".")[0] + "_" + str(cfg.INPUT.MIN_SIZE_TEST)
    predictions_path = os.path.join(output_folder, model_name + "_predictions.pth")
    seg_predictions_path = os.path.join(
        output_folder, model_name + "_seg_predictions.pth"
    )
    # if os.path.isfile(predictions_path) and os.path.isfile(seg_predictions_path):
    if False:
        predictions = torch.load(predictions_path)
        seg_predictions = torch.load(seg_predictions_path)
    else:
        device = torch.device(device)
        num_devices = (
            torch.distributed.get_world_size()
            if torch.distributed.is_initialized()
            else 1
        )
        logger = logging.getLogger("maskrcnn_benchmark.inference")
        dataset = data_loader.dataset
        logger.info("Start evaluation on {} images".format(len(dataset)))
        start_time = time.time()
        predictions, seg_predictions = compute_on_dataset(
            model, data_loader, device, cfg
        )
        # wait for all processes to complete before measuring the time
        synchronize()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=total_time))
        logger.info(
            "Total inference time: {} ({} s / img per device, on {} devices)".format(
                total_time_str, total_time * num_devices / len(dataset), num_devices
            )
        )

        # predictions = _accumulate_predictions_from_multiple_gpus(predictions)
        # if not is_main_process():
        # 	return

        if output_folder:
            torch.save(predictions, predictions_path)
            torch.save(seg_predictions, seg_predictions_path)

    prepare_results_for_evaluation(
        predictions,
        output_folder,
        model_name,
        seg_predictions=seg_predictions,
        vis=cfg.TEST.VIS,
        cfg=cfg
    )