Spaces:
Runtime error
Runtime error
File size: 20,114 Bytes
c310e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# encoding=utf8
from collections import namedtuple
import rrc_evaluation_funcs
import importlib
from prepare_results import prepare_results_for_evaluation
def evaluation_imports():
"""
evaluation_imports: Dictionary ( key = module name , value = alias ) with python modules used in the evaluation.
"""
return {
'Polygon':'plg',
'numpy':'np'
}
def default_evaluation_params():
"""
default_evaluation_params: Default parameters to use for the validation and evaluation.
"""
return {
'IOU_CONSTRAINT' :0.5,
'AREA_PRECISION_CONSTRAINT' :0.5,
'WORD_SPOTTING' :False,
'MIN_LENGTH_CARE_WORD' :3,
'GT_SAMPLE_NAME_2_ID':'gt_img_([0-9]+).txt',
'DET_SAMPLE_NAME_2_ID':'res_img_([0-9]+).txt',
'LTRB':False, #LTRB:2points(left,top,right,bottom) or 4 points(x1,y1,x2,y2,x3,y3,x4,y4)
'CRLF':False, # Lines are delimited by Windows CRLF format
'CONFIDENCES':False, #Detections must include confidence value. MAP and MAR will be calculated,
'SPECIAL_CHARACTERS':'!?.:,*"()路[]/\'',
'ONLY_REMOVE_FIRST_LAST_CHARACTER' : True
}
def validate_data(gtFilePath, submFilePath, evaluationParams):
"""
Method validate_data: validates that all files in the results folder are correct (have the correct name contents).
Validates also that there are no missing files in the folder.
If some error detected, the method raises the error
"""
gt = rrc_evaluation_funcs.load_zip_file(gtFilePath, evaluationParams['GT_SAMPLE_NAME_2_ID'])
subm = rrc_evaluation_funcs.load_zip_file(submFilePath, evaluationParams['DET_SAMPLE_NAME_2_ID'], True)
#Validate format of GroundTruth
for k in gt:
rrc_evaluation_funcs.validate_lines_in_file(k,gt[k],evaluationParams['CRLF'],evaluationParams['LTRB'],True)
#Validate format of results
for k in subm:
if (k in gt) == False :
raise Exception("The sample %s not present in GT" %k)
rrc_evaluation_funcs.validate_lines_in_file(k,subm[k],evaluationParams['CRLF'],evaluationParams['LTRB'],True,evaluationParams['CONFIDENCES'])
def evaluate_method(gtFilePath, submFilePath, evaluationParams):
"""
Method evaluate_method: evaluate method and returns the results
Results. Dictionary with the following values:
- method (required) Global method metrics. Ex: { 'Precision':0.8,'Recall':0.9 }
- samples (optional) Per sample metrics. Ex: {'sample1' : { 'Precision':0.8,'Recall':0.9 } , 'sample2' : { 'Precision':0.8,'Recall':0.9 }
"""
for module,alias in evaluation_imports().items():
globals()[alias] = importlib.import_module(module)
def polygon_from_points(points,correctOffset=False):
"""
Returns a Polygon object to use with the Polygon2 class from a list of 8 points: x1,y1,x2,y2,x3,y3,x4,y4
"""
if correctOffset: #this will substract 1 from the coordinates that correspond to the xmax and ymax
points[2] -= 1
points[4] -= 1
points[5] -= 1
points[7] -= 1
resBoxes=np.empty([1,8],dtype='int32')
resBoxes[0,0]=int(points[0])
resBoxes[0,4]=int(points[1])
resBoxes[0,1]=int(points[2])
resBoxes[0,5]=int(points[3])
resBoxes[0,2]=int(points[4])
resBoxes[0,6]=int(points[5])
resBoxes[0,3]=int(points[6])
resBoxes[0,7]=int(points[7])
pointMat = resBoxes[0].reshape([2,4]).T
return plg.Polygon( pointMat)
def rectangle_to_polygon(rect):
resBoxes=np.empty([1,8],dtype='int32')
resBoxes[0,0]=int(rect.xmin)
resBoxes[0,4]=int(rect.ymax)
resBoxes[0,1]=int(rect.xmin)
resBoxes[0,5]=int(rect.ymin)
resBoxes[0,2]=int(rect.xmax)
resBoxes[0,6]=int(rect.ymin)
resBoxes[0,3]=int(rect.xmax)
resBoxes[0,7]=int(rect.ymax)
pointMat = resBoxes[0].reshape([2,4]).T
return plg.Polygon( pointMat)
def rectangle_to_points(rect):
points = [int(rect.xmin), int(rect.ymax), int(rect.xmax), int(rect.ymax), int(rect.xmax), int(rect.ymin), int(rect.xmin), int(rect.ymin)]
return points
def get_union(pD,pG):
areaA = pD.area();
areaB = pG.area();
return areaA + areaB - get_intersection(pD, pG);
def get_intersection_over_union(pD,pG):
try:
return get_intersection(pD, pG) / get_union(pD, pG);
except:
return 0
def get_intersection(pD,pG):
pInt = pD & pG
if len(pInt) == 0:
return 0
return pInt.area()
def compute_ap(confList, matchList,numGtCare):
correct = 0
AP = 0
if len(confList)>0:
confList = np.array(confList)
matchList = np.array(matchList)
sorted_ind = np.argsort(-confList)
confList = confList[sorted_ind]
matchList = matchList[sorted_ind]
for n in range(len(confList)):
match = matchList[n]
if match:
correct += 1
AP += float(correct)/(n + 1)
if numGtCare>0:
AP /= numGtCare
return AP
def transcription_match(transGt,transDet,specialCharacters='!?.:,*"()路[]/\'',onlyRemoveFirstLastCharacterGT=True):
if onlyRemoveFirstLastCharacterGT:
#special characters in GT are allowed only at initial or final position
if (transGt==transDet):
return True
if specialCharacters.find(transGt[0])>-1:
if transGt[1:]==transDet:
return True
if specialCharacters.find(transGt[-1])>-1:
if transGt[0:len(transGt)-1]==transDet:
return True
if specialCharacters.find(transGt[0])>-1 and specialCharacters.find(transGt[-1])>-1:
if transGt[1:len(transGt)-1]==transDet:
return True
return False
else:
#Special characters are removed from the begining and the end of both Detection and GroundTruth
while len(transGt)>0 and specialCharacters.find(transGt[0])>-1:
transGt = transGt[1:]
while len(transDet)>0 and specialCharacters.find(transDet[0])>-1:
transDet = transDet[1:]
while len(transGt)>0 and specialCharacters.find(transGt[-1])>-1 :
transGt = transGt[0:len(transGt)-1]
while len(transDet)>0 and specialCharacters.find(transDet[-1])>-1:
transDet = transDet[0:len(transDet)-1]
return transGt == transDet
def include_in_dictionary(transcription):
"""
Function used in Word Spotting that finds if the Ground Truth transcription meets the rules to enter into the dictionary. If not, the transcription will be cared as don't care
"""
#special case 's at final
if transcription[len(transcription)-2:]=="'s" or transcription[len(transcription)-2:]=="'S":
transcription = transcription[0:len(transcription)-2]
#hypens at init or final of the word
transcription = transcription.strip('-');
specialCharacters = "'!?.:,*\"()路[]/";
for character in specialCharacters:
transcription = transcription.replace(character,' ')
transcription = transcription.strip()
if len(transcription) != len(transcription.replace(" ","")) :
return False;
if len(transcription) < evaluationParams['MIN_LENGTH_CARE_WORD']:
return False;
notAllowed = "脳梅螄";
range1 = [ ord(u'a'), ord(u'z') ]
range2 = [ ord(u'A'), ord(u'Z') ]
range3 = [ ord(u'脌'), ord(u'瓶') ]
range4 = [ ord(u'莿'), ord(u'煽') ]
range5 = [ ord(u'螁'), ord(u'峡') ]
range6 = [ ord(u'-'), ord(u'-') ]
for char in transcription :
charCode = ord(char)
if(notAllowed.find(char) != -1):
return False
valid = ( charCode>=range1[0] and charCode<=range1[1] ) or ( charCode>=range2[0] and charCode<=range2[1] ) or ( charCode>=range3[0] and charCode<=range3[1] ) or ( charCode>=range4[0] and charCode<=range4[1] ) or ( charCode>=range5[0] and charCode<=range5[1] ) or ( charCode>=range6[0] and charCode<=range6[1] )
if valid == False:
return False
return True
def include_in_dictionary_transcription(transcription):
"""
Function applied to the Ground Truth transcriptions used in Word Spotting. It removes special characters or terminations
"""
#special case 's at final
if transcription[len(transcription)-2:]=="'s" or transcription[len(transcription)-2:]=="'S":
transcription = transcription[0:len(transcription)-2]
#hypens at init or final of the word
transcription = transcription.strip('-');
specialCharacters = "'!?.:,*\"()路[]/";
for character in specialCharacters:
transcription = transcription.replace(character,' ')
transcription = transcription.strip()
return transcription
perSampleMetrics = {}
matchedSum = 0
Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax')
gt = rrc_evaluation_funcs.load_zip_file(gtFilePath,evaluationParams['GT_SAMPLE_NAME_2_ID'])
subm = rrc_evaluation_funcs.load_zip_file(submFilePath,evaluationParams['DET_SAMPLE_NAME_2_ID'],True)
numGlobalCareGt = 0;
numGlobalCareDet = 0;
arrGlobalConfidences = [];
arrGlobalMatches = [];
for resFile in gt:
gtFile = rrc_evaluation_funcs.decode_utf8(gt[resFile])
if (gtFile is None) :
raise Exception("The file %s is not UTF-8" %resFile)
recall = 0
precision = 0
hmean = 0
detCorrect = 0
iouMat = np.empty([1,1])
gtPols = []
detPols = []
gtTrans = []
detTrans = []
gtPolPoints = []
detPolPoints = []
gtDontCarePolsNum = [] #Array of Ground Truth Polygons' keys marked as don't Care
detDontCarePolsNum = [] #Array of Detected Polygons' matched with a don't Care GT
detMatchedNums = []
pairs = []
arrSampleConfidences = [];
arrSampleMatch = [];
sampleAP = 0;
evaluationLog = ""
pointsList,_,transcriptionsList = rrc_evaluation_funcs.get_tl_line_values_from_file_contents(gtFile,evaluationParams['CRLF'],evaluationParams['LTRB'],True,False)
for n in range(len(pointsList)):
points = pointsList[n]
transcription = transcriptionsList[n]
dontCare = transcription == "###"
if evaluationParams['LTRB']:
gtRect = Rectangle(*points)
gtPol = rectangle_to_polygon(gtRect)
else:
gtPol = polygon_from_points(points)
gtPols.append(gtPol)
gtPolPoints.append(points)
#On word spotting we will filter some transcriptions with special characters
if evaluationParams['WORD_SPOTTING'] :
if dontCare == False :
if include_in_dictionary(transcription) == False :
dontCare = True
else:
transcription = include_in_dictionary_transcription(transcription)
gtTrans.append(transcription)
if dontCare:
gtDontCarePolsNum.append( len(gtPols)-1 )
evaluationLog += "GT polygons: " + str(len(gtPols)) + (" (" + str(len(gtDontCarePolsNum)) + " don't care)\n" if len(gtDontCarePolsNum)>0 else "\n")
if resFile in subm:
detFile = rrc_evaluation_funcs.decode_utf8(subm[resFile])
pointsList,confidencesList,transcriptionsList = rrc_evaluation_funcs.get_tl_line_values_from_file_contents(detFile,evaluationParams['CRLF'],evaluationParams['LTRB'],True,evaluationParams['CONFIDENCES'])
for n in range(len(pointsList)):
points = pointsList[n]
transcription = transcriptionsList[n]
if evaluationParams['LTRB']:
detRect = Rectangle(*points)
detPol = rectangle_to_polygon(detRect)
else:
detPol = polygon_from_points(points)
detPols.append(detPol)
detPolPoints.append(points)
detTrans.append(transcription)
if len(gtDontCarePolsNum)>0 :
for dontCarePol in gtDontCarePolsNum:
dontCarePol = gtPols[dontCarePol]
intersected_area = get_intersection(dontCarePol,detPol)
pdDimensions = detPol.area()
precision = 0 if pdDimensions == 0 else intersected_area / pdDimensions
if (precision > evaluationParams['AREA_PRECISION_CONSTRAINT'] ):
detDontCarePolsNum.append( len(detPols)-1 )
break
evaluationLog += "DET polygons: " + str(len(detPols)) + (" (" + str(len(detDontCarePolsNum)) + " don't care)\n" if len(detDontCarePolsNum)>0 else "\n")
if len(gtPols)>0 and len(detPols)>0:
#Calculate IoU and precision matrixs
outputShape=[len(gtPols),len(detPols)]
iouMat = np.empty(outputShape)
gtRectMat = np.zeros(len(gtPols),np.int8)
detRectMat = np.zeros(len(detPols),np.int8)
for gtNum in range(len(gtPols)):
for detNum in range(len(detPols)):
pG = gtPols[gtNum]
pD = detPols[detNum]
iouMat[gtNum,detNum] = get_intersection_over_union(pD,pG)
for gtNum in range(len(gtPols)):
for detNum in range(len(detPols)):
if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and gtNum not in gtDontCarePolsNum and detNum not in detDontCarePolsNum :
if iouMat[gtNum,detNum]>evaluationParams['IOU_CONSTRAINT']:
gtRectMat[gtNum] = 1
detRectMat[detNum] = 1
#detection matched only if transcription is equal
if evaluationParams['WORD_SPOTTING']:
correct = gtTrans[gtNum].upper() == detTrans[detNum].upper()
else:
correct = transcription_match(gtTrans[gtNum].upper(),detTrans[detNum].upper(),evaluationParams['SPECIAL_CHARACTERS'],evaluationParams['ONLY_REMOVE_FIRST_LAST_CHARACTER'])==True
detCorrect += (1 if correct else 0)
if correct:
detMatchedNums.append(detNum)
pairs.append({'gt':gtNum,'det':detNum,'correct':correct})
evaluationLog += "Match GT #" + str(gtNum) + " with Det #" + str(detNum) + " trans. correct: " + str(correct) + "\n"
if evaluationParams['CONFIDENCES']:
for detNum in range(len(detPols)):
if detNum not in detDontCarePolsNum :
#we exclude the don't care detections
match = detNum in detMatchedNums
arrSampleConfidences.append(confidencesList[detNum])
arrSampleMatch.append(match)
arrGlobalConfidences.append(confidencesList[detNum]);
arrGlobalMatches.append(match);
numGtCare = (len(gtPols) - len(gtDontCarePolsNum))
numDetCare = (len(detPols) - len(detDontCarePolsNum))
if numGtCare == 0:
recall = float(1)
precision = float(0) if numDetCare >0 else float(1)
sampleAP = precision
else:
recall = float(detCorrect) / numGtCare
precision = 0 if numDetCare==0 else float(detCorrect) / numDetCare
if evaluationParams['CONFIDENCES']:
sampleAP = compute_ap(arrSampleConfidences, arrSampleMatch, numGtCare )
hmean = 0 if (precision + recall)==0 else 2.0 * precision * recall / (precision + recall)
matchedSum += detCorrect
numGlobalCareGt += numGtCare
numGlobalCareDet += numDetCare
perSampleMetrics[resFile] = {
'precision':precision,
'recall':recall,
'hmean':hmean,
'pairs':pairs,
'AP':sampleAP,
'iouMat':[] if len(detPols)>100 else iouMat.tolist(),
'gtPolPoints':gtPolPoints,
'detPolPoints':detPolPoints,
'gtTrans':gtTrans,
'detTrans':detTrans,
'gtDontCare':gtDontCarePolsNum,
'detDontCare':detDontCarePolsNum,
'evaluationParams': evaluationParams,
'evaluationLog': evaluationLog
}
# Compute AP
AP = 0
if evaluationParams['CONFIDENCES']:
AP = compute_ap(arrGlobalConfidences, arrGlobalMatches, numGlobalCareGt)
methodRecall = 0 if numGlobalCareGt == 0 else float(matchedSum)/numGlobalCareGt
methodPrecision = 0 if numGlobalCareDet == 0 else float(matchedSum)/numGlobalCareDet
methodHmean = 0 if methodRecall + methodPrecision==0 else 2* methodRecall * methodPrecision / (methodRecall + methodPrecision)
methodMetrics = {'precision':methodPrecision, 'recall':methodRecall,'hmean': methodHmean, 'AP': AP }
resDict = {'calculated':True,'Message':'','method': methodMetrics,'per_sample': perSampleMetrics}
return resDict;
if __name__=='__main__':
'''
results_dir: result directory
score_det: score of detection bounding box
score_rec: score of the mask recognition branch
score_rec_seq: score of the sequence recognition branch
lexicon_type: 1 for generic; 2 for weak; 3 for strong
'''
results_dir = '../../../output/mixtrain/inference/icdar_2015_test/model_0250000_1440_results/'
lexicon_type = 3
score_det = 0.01
score_rec = 0.4
# score_rec_seq set to 0.7 for lexicon_type 3 or 2; 0.8 for lexicon_type 1
score_rec_seq = 0.7
evaluate_result_path = prepare_results_for_evaluation(results_dir,
lexicon_type=lexicon_type, cache_dir='./cache_files',
score_det=score_det, score_rec=score_rec, score_rec_seq=score_rec_seq)
p = {
'g': "../gt.zip",
's': evaluate_result_path
}
rrc_evaluation_funcs.main_evaluation(p,default_evaluation_params,validate_data,evaluate_method) |