File size: 20,114 Bytes
c310e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# encoding=utf8
from collections import namedtuple
import rrc_evaluation_funcs
import importlib
from prepare_results import prepare_results_for_evaluation

def evaluation_imports():
    """
    evaluation_imports: Dictionary ( key = module name , value = alias  )  with python modules used in the evaluation. 
    """      
    return {
            'Polygon':'plg',
            'numpy':'np'
            }

def default_evaluation_params():
    """
    default_evaluation_params: Default parameters to use for the validation and evaluation.
    """          
    return {
            'IOU_CONSTRAINT' :0.5,
            'AREA_PRECISION_CONSTRAINT' :0.5,
            'WORD_SPOTTING' :False,
            'MIN_LENGTH_CARE_WORD' :3,
            'GT_SAMPLE_NAME_2_ID':'gt_img_([0-9]+).txt',
            'DET_SAMPLE_NAME_2_ID':'res_img_([0-9]+).txt',            
            'LTRB':False, #LTRB:2points(left,top,right,bottom) or 4 points(x1,y1,x2,y2,x3,y3,x4,y4)
            'CRLF':False, # Lines are delimited by Windows CRLF format
            'CONFIDENCES':False, #Detections must include confidence value. MAP and MAR will be calculated,
            'SPECIAL_CHARACTERS':'!?.:,*"()路[]/\'',
            'ONLY_REMOVE_FIRST_LAST_CHARACTER' : True
        }

def validate_data(gtFilePath, submFilePath, evaluationParams):
    """
    Method validate_data: validates that all files in the results folder are correct (have the correct name contents).
                            Validates also that there are no missing files in the folder.
                            If some error detected, the method raises the error
    """
    gt = rrc_evaluation_funcs.load_zip_file(gtFilePath, evaluationParams['GT_SAMPLE_NAME_2_ID'])
    
    subm = rrc_evaluation_funcs.load_zip_file(submFilePath, evaluationParams['DET_SAMPLE_NAME_2_ID'], True)

    #Validate format of GroundTruth
    for k in gt:
        rrc_evaluation_funcs.validate_lines_in_file(k,gt[k],evaluationParams['CRLF'],evaluationParams['LTRB'],True)

    #Validate format of results
    for k in subm:
        if (k in gt) == False :
            raise Exception("The sample %s not present in GT" %k)
        
        rrc_evaluation_funcs.validate_lines_in_file(k,subm[k],evaluationParams['CRLF'],evaluationParams['LTRB'],True,evaluationParams['CONFIDENCES'])

    
def evaluate_method(gtFilePath, submFilePath, evaluationParams):
    """
    Method evaluate_method: evaluate method and returns the results
        Results. Dictionary with the following values:
        - method (required)  Global method metrics. Ex: { 'Precision':0.8,'Recall':0.9 }
        - samples (optional) Per sample metrics. Ex: {'sample1' : { 'Precision':0.8,'Recall':0.9 } , 'sample2' : { 'Precision':0.8,'Recall':0.9 }
    """  
    for module,alias in evaluation_imports().items():
        globals()[alias] = importlib.import_module(module)

    def polygon_from_points(points,correctOffset=False):
        """
        Returns a Polygon object to use with the Polygon2 class from a list of 8 points: x1,y1,x2,y2,x3,y3,x4,y4
        """        
        
        if correctOffset: #this will substract 1 from the coordinates that correspond to the xmax and ymax
            points[2] -= 1
            points[4] -= 1
            points[5] -= 1
            points[7] -= 1
            
        resBoxes=np.empty([1,8],dtype='int32')
        resBoxes[0,0]=int(points[0])
        resBoxes[0,4]=int(points[1])
        resBoxes[0,1]=int(points[2])
        resBoxes[0,5]=int(points[3])
        resBoxes[0,2]=int(points[4])
        resBoxes[0,6]=int(points[5])
        resBoxes[0,3]=int(points[6])
        resBoxes[0,7]=int(points[7])
        pointMat = resBoxes[0].reshape([2,4]).T
        return plg.Polygon( pointMat)

    def rectangle_to_polygon(rect):
        resBoxes=np.empty([1,8],dtype='int32')
        resBoxes[0,0]=int(rect.xmin)
        resBoxes[0,4]=int(rect.ymax)
        resBoxes[0,1]=int(rect.xmin)
        resBoxes[0,5]=int(rect.ymin)
        resBoxes[0,2]=int(rect.xmax)
        resBoxes[0,6]=int(rect.ymin)
        resBoxes[0,3]=int(rect.xmax)
        resBoxes[0,7]=int(rect.ymax)

        pointMat = resBoxes[0].reshape([2,4]).T
        
        return plg.Polygon( pointMat)
    
    def rectangle_to_points(rect):
        points = [int(rect.xmin), int(rect.ymax), int(rect.xmax), int(rect.ymax), int(rect.xmax), int(rect.ymin), int(rect.xmin), int(rect.ymin)]
        return points
        
    def get_union(pD,pG):
        areaA = pD.area();
        areaB = pG.area();
        return areaA + areaB - get_intersection(pD, pG);
        
    def get_intersection_over_union(pD,pG):
        try:
            return get_intersection(pD, pG) / get_union(pD, pG);
        except:
            return 0
        
    def get_intersection(pD,pG):
        pInt = pD & pG
        if len(pInt) == 0:
            return 0
        return pInt.area()
    
    def compute_ap(confList, matchList,numGtCare):
        correct = 0
        AP = 0
        if len(confList)>0:
            confList = np.array(confList)
            matchList = np.array(matchList)
            sorted_ind = np.argsort(-confList)
            confList = confList[sorted_ind]
            matchList = matchList[sorted_ind]
            for n in range(len(confList)):
                match = matchList[n]
                if match:
                    correct += 1
                    AP += float(correct)/(n + 1)

            if numGtCare>0:
                AP /= numGtCare
            
        return AP  
    
    def transcription_match(transGt,transDet,specialCharacters='!?.:,*"()路[]/\'',onlyRemoveFirstLastCharacterGT=True):
        
        if onlyRemoveFirstLastCharacterGT:
            #special characters in GT are allowed only at initial or final position
            if (transGt==transDet):
                return True        

            if specialCharacters.find(transGt[0])>-1:
                if transGt[1:]==transDet:
                    return True

            if specialCharacters.find(transGt[-1])>-1:
                if transGt[0:len(transGt)-1]==transDet:
                    return True

            if specialCharacters.find(transGt[0])>-1 and specialCharacters.find(transGt[-1])>-1:
                if transGt[1:len(transGt)-1]==transDet:
                    return True
            return False
        else:
            #Special characters are removed from the begining and the end of both Detection and GroundTruth
            while len(transGt)>0 and specialCharacters.find(transGt[0])>-1:
                transGt = transGt[1:]
				
            while len(transDet)>0 and specialCharacters.find(transDet[0])>-1:
                transDet = transDet[1:]
                
            while len(transGt)>0 and specialCharacters.find(transGt[-1])>-1 :
                transGt = transGt[0:len(transGt)-1]
                
            while len(transDet)>0 and specialCharacters.find(transDet[-1])>-1:
                transDet = transDet[0:len(transDet)-1]
                
            return transGt == transDet
                    
    
    def include_in_dictionary(transcription):
        """
        Function used in Word Spotting that finds if the Ground Truth transcription meets the rules to enter into the dictionary. If not, the transcription will be cared as don't care
        """        
        #special case 's at final
        if transcription[len(transcription)-2:]=="'s" or transcription[len(transcription)-2:]=="'S":
            transcription = transcription[0:len(transcription)-2]
        
        #hypens at init or final of the word
        transcription = transcription.strip('-');
        
        specialCharacters = "'!?.:,*\"()路[]/";
        for character in specialCharacters:
            transcription = transcription.replace(character,' ')
        
        transcription = transcription.strip()
        
        if len(transcription) != len(transcription.replace(" ","")) :
            return False;
        
        if len(transcription) < evaluationParams['MIN_LENGTH_CARE_WORD']:
            return False;
        
        notAllowed = "脳梅螄";
        
        range1 = [ ord(u'a'), ord(u'z') ]
        range2 = [ ord(u'A'), ord(u'Z') ]
        range3 = [ ord(u'脌'), ord(u'瓶') ]
        range4 = [ ord(u'莿'), ord(u'煽') ]
        range5 = [ ord(u'螁'), ord(u'峡') ]
        range6 = [ ord(u'-'), ord(u'-') ]
        
        for char in transcription :
            charCode = ord(char)
            if(notAllowed.find(char) != -1):
                return False
            
            valid = ( charCode>=range1[0] and charCode<=range1[1] ) or ( charCode>=range2[0] and charCode<=range2[1] ) or ( charCode>=range3[0] and charCode<=range3[1] ) or ( charCode>=range4[0] and charCode<=range4[1] ) or ( charCode>=range5[0] and charCode<=range5[1] ) or ( charCode>=range6[0] and charCode<=range6[1] )
            if valid == False:
                return False
        
        return True
    
    def include_in_dictionary_transcription(transcription):
        """
        Function applied to the Ground Truth transcriptions used in Word Spotting. It removes special characters or terminations
        """
        #special case 's at final
        if transcription[len(transcription)-2:]=="'s" or transcription[len(transcription)-2:]=="'S":
            transcription = transcription[0:len(transcription)-2]
        
        #hypens at init or final of the word
        transcription = transcription.strip('-');            
        
        specialCharacters = "'!?.:,*\"()路[]/";
        for character in specialCharacters:
            transcription = transcription.replace(character,' ')
        
        transcription = transcription.strip()
        
        return transcription
    
    perSampleMetrics = {}
    
    matchedSum = 0
    
    Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax')
    
    gt = rrc_evaluation_funcs.load_zip_file(gtFilePath,evaluationParams['GT_SAMPLE_NAME_2_ID'])
    subm = rrc_evaluation_funcs.load_zip_file(submFilePath,evaluationParams['DET_SAMPLE_NAME_2_ID'],True)
   
    numGlobalCareGt = 0;
    numGlobalCareDet = 0;
   
    arrGlobalConfidences = [];
    arrGlobalMatches = [];

    for resFile in gt:
        
        gtFile = rrc_evaluation_funcs.decode_utf8(gt[resFile])
        if (gtFile is None) :
            raise Exception("The file %s is not UTF-8" %resFile)        

        recall = 0
        precision = 0
        hmean = 0    
        detCorrect = 0
        iouMat = np.empty([1,1])
        gtPols = []
        detPols = []
        gtTrans = []
        detTrans = []
        gtPolPoints = []
        detPolPoints = []  
        gtDontCarePolsNum = [] #Array of Ground Truth Polygons' keys marked as don't Care
        detDontCarePolsNum = [] #Array of Detected Polygons' matched with a don't Care GT
        detMatchedNums = []
        pairs = []
        
        arrSampleConfidences = [];
        arrSampleMatch = [];
        sampleAP = 0;
        
        evaluationLog = ""

        pointsList,_,transcriptionsList = rrc_evaluation_funcs.get_tl_line_values_from_file_contents(gtFile,evaluationParams['CRLF'],evaluationParams['LTRB'],True,False)
        for n in range(len(pointsList)):
            points = pointsList[n]
            transcription = transcriptionsList[n]
            dontCare = transcription == "###"
            if evaluationParams['LTRB']:
                gtRect = Rectangle(*points)
                gtPol = rectangle_to_polygon(gtRect)
            else:
                gtPol = polygon_from_points(points)
            gtPols.append(gtPol)
            gtPolPoints.append(points)

            #On word spotting we will filter some transcriptions with special characters
            if evaluationParams['WORD_SPOTTING'] :
                if dontCare == False : 
                    if include_in_dictionary(transcription) == False : 
                        dontCare = True
                    else:
                        transcription = include_in_dictionary_transcription(transcription)

            gtTrans.append(transcription)
            if dontCare:
                gtDontCarePolsNum.append( len(gtPols)-1 ) 

        evaluationLog += "GT polygons: " + str(len(gtPols)) + (" (" + str(len(gtDontCarePolsNum)) + " don't care)\n" if len(gtDontCarePolsNum)>0 else "\n")
        
        if resFile in subm:
            
            detFile = rrc_evaluation_funcs.decode_utf8(subm[resFile]) 
                    
            pointsList,confidencesList,transcriptionsList = rrc_evaluation_funcs.get_tl_line_values_from_file_contents(detFile,evaluationParams['CRLF'],evaluationParams['LTRB'],True,evaluationParams['CONFIDENCES'])
            
            for n in range(len(pointsList)):
                points = pointsList[n]
                transcription = transcriptionsList[n]
                
                if evaluationParams['LTRB']:
                    detRect = Rectangle(*points)
                    detPol = rectangle_to_polygon(detRect)
                else:                    
                    detPol = polygon_from_points(points)
                detPols.append(detPol)
                detPolPoints.append(points)
                detTrans.append(transcription)

                if len(gtDontCarePolsNum)>0 :
                    for dontCarePol in gtDontCarePolsNum:
                        dontCarePol = gtPols[dontCarePol]
                        intersected_area = get_intersection(dontCarePol,detPol)
                        pdDimensions = detPol.area()
                        precision = 0 if pdDimensions == 0 else intersected_area / pdDimensions
                        if (precision > evaluationParams['AREA_PRECISION_CONSTRAINT'] ):
                            detDontCarePolsNum.append( len(detPols)-1 )
                            break
                            
            evaluationLog += "DET polygons: " + str(len(detPols)) + (" (" + str(len(detDontCarePolsNum)) + " don't care)\n" if len(detDontCarePolsNum)>0 else "\n")
            
            if len(gtPols)>0 and len(detPols)>0:
                #Calculate IoU and precision matrixs
                outputShape=[len(gtPols),len(detPols)]
                iouMat = np.empty(outputShape)
                gtRectMat = np.zeros(len(gtPols),np.int8)
                detRectMat = np.zeros(len(detPols),np.int8)
                for gtNum in range(len(gtPols)):
                    for detNum in range(len(detPols)):
                        pG = gtPols[gtNum]
                        pD = detPols[detNum]
                        iouMat[gtNum,detNum] = get_intersection_over_union(pD,pG)

                for gtNum in range(len(gtPols)):
                    for detNum in range(len(detPols)):
                        if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and gtNum not in gtDontCarePolsNum and detNum not in detDontCarePolsNum :
                            if iouMat[gtNum,detNum]>evaluationParams['IOU_CONSTRAINT']:
                                gtRectMat[gtNum] = 1
                                detRectMat[detNum] = 1
                                #detection matched only if transcription is equal
                                if evaluationParams['WORD_SPOTTING']:
                                    correct = gtTrans[gtNum].upper() == detTrans[detNum].upper()
                                else:
                                    correct = transcription_match(gtTrans[gtNum].upper(),detTrans[detNum].upper(),evaluationParams['SPECIAL_CHARACTERS'],evaluationParams['ONLY_REMOVE_FIRST_LAST_CHARACTER'])==True
                                detCorrect += (1 if correct else 0)
                                if correct:
                                    detMatchedNums.append(detNum)
                                pairs.append({'gt':gtNum,'det':detNum,'correct':correct})
                                evaluationLog += "Match GT #" + str(gtNum) + " with Det #" + str(detNum) + " trans. correct: " + str(correct) + "\n"
                                
            if evaluationParams['CONFIDENCES']:
                for detNum in range(len(detPols)):
                    if detNum not in detDontCarePolsNum :
                        #we exclude the don't care detections
                        match = detNum in detMatchedNums

                        arrSampleConfidences.append(confidencesList[detNum])
                        arrSampleMatch.append(match)

                        arrGlobalConfidences.append(confidencesList[detNum]);
                        arrGlobalMatches.append(match);                                
                
        numGtCare = (len(gtPols) - len(gtDontCarePolsNum))
        numDetCare = (len(detPols) - len(detDontCarePolsNum))
        if numGtCare == 0:
            recall = float(1)
            precision = float(0) if numDetCare >0 else float(1)
            sampleAP = precision
        else:
            recall = float(detCorrect) / numGtCare
            precision = 0 if numDetCare==0 else float(detCorrect) / numDetCare
            if evaluationParams['CONFIDENCES']:
                sampleAP = compute_ap(arrSampleConfidences, arrSampleMatch, numGtCare )                    

        hmean = 0 if (precision + recall)==0 else 2.0 * precision * recall / (precision + recall)
            
        matchedSum += detCorrect
        numGlobalCareGt += numGtCare
        numGlobalCareDet += numDetCare

        perSampleMetrics[resFile] = {
                                        'precision':precision,
                                        'recall':recall,
                                        'hmean':hmean,
                                        'pairs':pairs,
                                        'AP':sampleAP,
                                        'iouMat':[] if len(detPols)>100 else iouMat.tolist(),
                                        'gtPolPoints':gtPolPoints,
                                        'detPolPoints':detPolPoints,
                                        'gtTrans':gtTrans,
                                        'detTrans':detTrans,
                                        'gtDontCare':gtDontCarePolsNum,
                                        'detDontCare':detDontCarePolsNum,
                                        'evaluationParams': evaluationParams,
                                        'evaluationLog': evaluationLog     
                                    }
        
    # Compute AP
    AP = 0
    if evaluationParams['CONFIDENCES']:
        AP = compute_ap(arrGlobalConfidences, arrGlobalMatches, numGlobalCareGt)

    methodRecall = 0 if numGlobalCareGt == 0 else float(matchedSum)/numGlobalCareGt
    methodPrecision = 0 if numGlobalCareDet == 0 else float(matchedSum)/numGlobalCareDet
    methodHmean = 0 if methodRecall + methodPrecision==0 else 2* methodRecall * methodPrecision / (methodRecall + methodPrecision)
    
    methodMetrics = {'precision':methodPrecision, 'recall':methodRecall,'hmean': methodHmean, 'AP': AP  }

    resDict = {'calculated':True,'Message':'','method': methodMetrics,'per_sample': perSampleMetrics}
    
    
    return resDict;



if __name__=='__main__':
    '''
    results_dir: result directory
    score_det: score of detection bounding box
    score_rec: score of the mask recognition branch
    score_rec_seq: score of the sequence recognition branch
    lexicon_type: 1 for generic; 2 for weak; 3 for strong
    '''
    results_dir = '../../../output/mixtrain/inference/icdar_2015_test/model_0250000_1440_results/'
    lexicon_type = 3 
    score_det = 0.01
    score_rec = 0.4
    # score_rec_seq set to 0.7 for lexicon_type 3 or 2; 0.8 for lexicon_type 1
    score_rec_seq = 0.7
    evaluate_result_path = prepare_results_for_evaluation(results_dir, 
        lexicon_type=lexicon_type, cache_dir='./cache_files', 
        score_det=score_det, score_rec=score_rec, score_rec_seq=score_rec_seq)
    p = {
        'g': "../gt.zip",  
        's': evaluate_result_path
    }
    rrc_evaluation_funcs.main_evaluation(p,default_evaluation_params,validate_data,evaluate_method)