File size: 9,628 Bytes
c310e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import cv2
import torch
from torchvision import transforms as T

from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.utils.chars import getstr_grid, get_tight_rect

from PIL import Image
import numpy as np
import argparse

class TextDemo(object):
    def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        min_image_size=224,
        output_polygon=True
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        checkpointer = DetectronCheckpointer(cfg, self.model)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()
        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.output_polygon = output_polygon

    def build_transform(self):
        """
        Creates a basic transformation that was used to train the models
        """
        cfg = self.cfg
        # we are loading images with OpenCV, so we don't need to convert them
        # to BGR, they are already! So all we need to do is to normalize
        # by 255 if we want to convert to BGR255 format, or flip the channels
        # if we want it to be in RGB in [0-1] range.
        if cfg.INPUT.TO_BGR255:
            to_bgr_transform = T.Lambda(lambda x: x * 255)
        else:
            to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])

        normalize_transform = T.Normalize(
            mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
        )

        transform = T.Compose(
            [
                T.ToPILImage(),
                T.Resize(self.min_image_size),
                T.ToTensor(),
                to_bgr_transform,
                normalize_transform,
            ]
        )
        return transform

    def run_on_opencv_image(self, image):
        """
        Arguments:
            image (np.ndarray): an image as returned by OpenCV
        Returns:
            result_polygons (list): detection results
            result_words (list): recognition results
        """
        result_polygons, result_words = self.compute_prediction(image)
        return result_polygons, result_words

    def compute_prediction(self, original_image):
        # apply pre-processing to image
        image = self.transforms(original_image)
        # convert to an ImageList, padded so that it is divisible by
        # cfg.DATALOADER.SIZE_DIVISIBILITY
        image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY)
        image_list = image_list.to(self.device)
        # compute predictions
        with torch.no_grad():
            predictions, _, _ = self.model(image_list)
        global_predictions = predictions[0]
        char_predictions = predictions[1]
        char_mask = char_predictions['char_mask']
        char_boxes = char_predictions['boxes']
        words, rec_scores = self.process_char_mask(char_mask, char_boxes)
        seq_words = char_predictions['seq_outputs']
        seq_scores = char_predictions['seq_scores']

        global_predictions = [o.to(self.cpu_device) for o in global_predictions]

        # always single image is passed at a time
        global_prediction = global_predictions[0]

        # reshape prediction (a BoxList) into the original image size
        height, width = original_image.shape[:-1]
        global_prediction = global_prediction.resize((width, height))
        boxes = global_prediction.bbox.tolist()
        scores = global_prediction.get_field("scores").tolist()
        masks = global_prediction.get_field("mask").cpu().numpy()

        result_polygons = []
        result_words = []
        for k, box in enumerate(boxes):
            score = scores[k]
            if score < self.confidence_threshold:
                continue
            box = list(map(int, box))
            mask = masks[k,0,:,:]
            polygon = self.mask2polygon(mask, box, original_image.shape, threshold=0.5, output_polygon=self.output_polygon)
            if polygon is None:
                polygon = [box[0], box[1], box[2], box[1], box[2], box[3], box[0], box[3]]
            result_polygons.append(polygon)
            word = words[k]
            rec_score = rec_scores[k]
            seq_word = seq_words[k]
            seq_char_scores = seq_scores[k]
            seq_score = sum(seq_char_scores) / float(len(seq_char_scores))
            if seq_score > rec_score:
                result_words.append(seq_word)
            else:
                result_words.append(word)
        return result_polygons, result_words

    def process_char_mask(self, char_masks, boxes, threshold=192):
        texts, rec_scores = [], []
        for index in range(char_masks.shape[0]):
            box = list(boxes[index])
            box = list(map(int, box))
            text, rec_score, _, _ = getstr_grid(char_masks[index,:,:,:].copy(), box, threshold=threshold)
            texts.append(text)
            rec_scores.append(rec_score)
        return texts, rec_scores

    def mask2polygon(self, mask, box, im_size, threshold=0.5, output_polygon=True):
        # mask 32*128
        image_width, image_height = im_size[1], im_size[0]
        box_h = box[3] - box[1]
        box_w = box[2] - box[0]
        cls_polys = (mask*255).astype(np.uint8)
        poly_map = np.array(Image.fromarray(cls_polys).resize((box_w, box_h)))
        poly_map = poly_map.astype(np.float32) / 255
        poly_map=cv2.GaussianBlur(poly_map,(3,3),sigmaX=3)
        ret, poly_map = cv2.threshold(poly_map,0.5,1,cv2.THRESH_BINARY)
        if output_polygon:
            SE1=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
            poly_map = cv2.erode(poly_map,SE1) 
            poly_map = cv2.dilate(poly_map,SE1);
            poly_map = cv2.morphologyEx(poly_map,cv2.MORPH_CLOSE,SE1)
            try:
                _, contours, _ = cv2.findContours((poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
            except:
                contours, _ = cv2.findContours((poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
            if len(contours)==0:
                print(contours)
                print(len(contours))
                return None
            max_area=0
            max_cnt = contours[0]
            for cnt in contours:
                area=cv2.contourArea(cnt)
                if area > max_area:
                    max_area = area
                    max_cnt = cnt
            perimeter = cv2.arcLength(max_cnt,True)
            epsilon = 0.01*cv2.arcLength(max_cnt,True)
            approx = cv2.approxPolyDP(max_cnt,epsilon,True)
            pts = approx.reshape((-1,2))
            pts[:,0] = pts[:,0] + box[0]
            pts[:,1] = pts[:,1] + box[1]
            polygon = list(pts.reshape((-1,)))
            polygon = list(map(int, polygon))
            if len(polygon)<6:
                return None     
        else:      
            SE1=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
            poly_map = cv2.erode(poly_map,SE1) 
            poly_map = cv2.dilate(poly_map,SE1);
            poly_map = cv2.morphologyEx(poly_map,cv2.MORPH_CLOSE,SE1)
            idy,idx=np.where(poly_map == 1)
            xy=np.vstack((idx,idy))
            xy=np.transpose(xy)
            hull = cv2.convexHull(xy, clockwise=True)
            #reverse order of points.
            if  hull is None:
                return None
            hull=hull[::-1]
            #find minimum area bounding box.
            rect = cv2.minAreaRect(hull)
            corners = cv2.boxPoints(rect)
            corners = np.array(corners, dtype="int")
            pts = get_tight_rect(corners, box[0], box[1], image_height, image_width, 1)
            polygon = [x * 1.0 for x in pts]
            polygon = list(map(int, polygon))
        return polygon

    def visualization(self, image, polygons, words):
        for polygon, word in zip(polygons, words):
            pts = np.array(polygon, np.int32)
            pts = pts.reshape((-1,1,2))
            xmin = min(pts[:,0,0])
            ymin = min(pts[:,0,1])
            cv2.polylines(image,[pts],True,(0,0,255))
            cv2.putText(image, word, (xmin, ymin), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)


def main(args):
    # update the config options with the config file
    cfg.merge_from_file(args.config_file)
    # manual override some options
    # cfg.merge_from_list(["MODEL.DEVICE", "cpu"])

    text_demo = TextDemo(
        cfg,
        min_image_size=800,
        confidence_threshold=0.7,
        output_polygon=True
    )
    # load image and then run prediction
    
    image = cv2.imread(args.image_path)
    result_polygons, result_words = text_demo.run_on_opencv_image(image)
    text_demo.visualization(image, result_polygons, result_words)
    cv2.imwrite(args.visu_path, image)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='parameters for demo')
    parser.add_argument("--config-file", type=str, default='configs/mixtrain/seg_rec_poly_fuse_feature.yaml')
    parser.add_argument("--image_path", type=str, default='./demo_images/demo.jpg')
    parser.add_argument("--visu_path", type=str, default='./demo_images/demo_results.jpg')
    args = parser.parse_args()
    main(args)