Spaces:
Runtime error
Runtime error
File size: 11,687 Bytes
c310e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
# # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# """
# This file contains primitives for multi-gpu communication.
# This is useful when doing distributed training.
# """
# import os
# import pickle
# import tempfile
# import time
# import torch
# import torch.distributed as dist
# # def get_world_size():
# # if not dist.is_initialized():
# # return 1
# # return dist.get_world_size()
# #
# #
# # def is_main_process():
# # if not dist.is_initialized():
# # return True
# # return dist.get_rank() == 0
# #
# # def get_rank():
# # if not dist.is_initialized():
# # return 0
# # return dist.get_rank()
# #
# # def synchronize():
# # """
# # Helper function to synchronize between multiple processes when
# # using distributed training
# # """
# # if not dist.is_initialized():
# # return
# # world_size = dist.get_world_size()
# # rank = dist.get_rank()
# # if world_size == 1:
# # return
# #
# # def _send_and_wait(r):
# # if rank == r:
# # tensor = torch.tensor(0, device="cuda")
# # else:
# # tensor = torch.tensor(1, device="cuda")
# # dist.broadcast(tensor, r)
# # while tensor.item() == 1:
# # time.sleep(1)
# #
# # _send_and_wait(0)
# # # now sync on the main process
# # _send_and_wait(1)
# #
# #
# def _encode(encoded_data, data):
# # gets a byte representation for the data
# encoded_bytes = pickle.dumps(data)
# # convert this byte string into a byte tensor
# storage = torch.ByteStorage.from_buffer(encoded_bytes)
# tensor = torch.ByteTensor(storage).to("cuda")
# # encoding: first byte is the size and then rest is the data
# s = tensor.numel()
# assert s <= 255, "Can't encode data greater than 255 bytes"
# # put the encoded data in encoded_data
# encoded_data[0] = s
# encoded_data[1 : (s + 1)] = tensor
# def _decode(encoded_data):
# size = encoded_data[0]
# encoded_tensor = encoded_data[1 : (size + 1)].to("cpu")
# return pickle.loads(bytearray(encoded_tensor.tolist()))
# # TODO try to use tensor in shared-memory instead of serializing to disk
# # this involves getting the all_gather to work
# def scatter_gather(data):
# """
# This function gathers data from multiple processes, and returns them
# in a list, as they were obtained from each process.
# This function is useful for retrieving data from multiple processes,
# when launching the code with torch.distributed.launch
# Note: this function is slow and should not be used in tight loops, i.e.,
# do not use it in the training loop.
# Arguments:
# data: the object to be gathered from multiple processes.
# It must be serializable
# Returns:
# result (list): a list with as many elements as there are processes,
# where each element i in the list corresponds to the data that was
# gathered from the process of rank i.
# """
# # strategy: the main process creates a temporary directory, and communicates
# # the location of the temporary directory to all other processes.
# # each process will then serialize the data to the folder defined by
# # the main process, and then the main process reads all of the serialized
# # files and returns them in a list
# if not dist.is_initialized():
# return [data]
# synchronize()
# # get rank of the current process
# rank = dist.get_rank()
# # the data to communicate should be small
# data_to_communicate = torch.empty(256, dtype=torch.uint8, device="cuda")
# if rank == 0:
# # manually creates a temporary directory, that needs to be cleaned
# # afterwards
# tmp_dir = tempfile.mkdtemp()
# _encode(data_to_communicate, tmp_dir)
# synchronize()
# # the main process (rank=0) communicates the data to all processes
# dist.broadcast(data_to_communicate, 0)
# # get the data that was communicated
# tmp_dir = _decode(data_to_communicate)
# # each process serializes to a different file
# file_template = "file{}.pth"
# tmp_file = os.path.join(tmp_dir, file_template.format(rank))
# torch.save(data, tmp_file)
# # synchronize before loading the data
# synchronize()
# # only the master process returns the data
# if rank == 0:
# data_list = []
# world_size = dist.get_world_size()
# for r in range(world_size):
# file_path = os.path.join(tmp_dir, file_template.format(r))
# d = torch.load(file_path)
# data_list.append(d)
# # cleanup
# os.remove(file_path)
# # cleanup
# os.rmdir(tmp_dir)
# return data_list
# def get_world_size():
# if not dist.is_available():
# print('distributed is not available')
# return 1
# if not dist.is_initialized():
# print('distributed is not initialized')
# return 1
# return dist.get_world_size()
# def get_rank():
# if not dist.is_available():
# return 0
# if not dist.is_initialized():
# return 0
# return dist.get_rank()
# def is_main_process():
# return get_rank() == 0
# def synchronize():
# """
# Helper function to synchronize (barrier) among all processes when
# using distributed training
# """
# if not dist.is_available():
# return
# if not dist.is_initialized():
# return
# world_size = dist.get_world_size()
# if world_size == 1:
# return
# dist.barrier()
# def all_gather(data):
# """
# Run all_gather on arbitrary picklable data (not necessarily tensors)
# Args:
# data: any picklable object
# Returns:
# list[data]: list of data gathered from each rank
# """
# world_size = get_world_size()
# if world_size == 1:
# return [data]
# # serialized to a Tensor
# buffer = pickle.dumps(data)
# storage = torch.ByteStorage.from_buffer(buffer)
# tensor = torch.ByteTensor(storage).to("cuda")
# # obtain Tensor size of each rank
# local_size = torch.IntTensor([tensor.numel()]).to("cuda")
# size_list = [torch.IntTensor([0]).to("cuda") for _ in range(world_size)]
# dist.all_gather(size_list, local_size)
# size_list = [int(size.item()) for size in size_list]
# max_size = max(size_list)
# # receiving Tensor from all ranks
# # we pad the tensor because torch all_gather does not support
# # gathering tensors of different shapes
# tensor_list = []
# for _ in size_list:
# tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda"))
# if local_size != max_size:
# padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda")
# tensor = torch.cat((tensor, padding), dim=0)
# dist.all_gather(tensor_list, tensor)
# data_list = []
# for size, tensor in zip(size_list, tensor_list):
# buffer = tensor.cpu().numpy().tobytes()[:size]
# data_list.append(pickle.loads(buffer))
# return data_list
# def reduce_dict(input_dict, average=True):
# """
# Args:
# input_dict (dict): all the values will be reduced
# average (bool): whether to do average or sum
# Reduce the values in the dictionary from all processes so that process with rank
# 0 has the averaged results. Returns a dict with the same fields as
# input_dict, after reduction.
# """
# world_size = get_world_size()
# if world_size < 2:
# return input_dict
# with torch.no_grad():
# names = []
# values = []
# # sort the keys so that they are consistent across processes
# for k in sorted(input_dict.keys()):
# names.append(k)
# values.append(input_dict[k])
# values = torch.stack(values, dim=0)
# dist.reduce(values, dst=0)
# if dist.get_rank() == 0 and average:
# # only main process gets accumulated, so only divide by
# # world_size in this case
# values /= world_size
# reduced_dict = {k: v for k, v in zip(names, values)}
# return reduced_dict
"""
This file contains primitives for multi-gpu communication.
This is useful when doing distributed training.
"""
import pickle
import time
import torch
import torch.distributed as dist
def get_world_size():
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
def scatter_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.LongTensor([tensor.numel()]).to("cuda")
size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda"))
if local_size != max_size:
padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda")
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that process with rank
0 has the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.reduce(values, dst=0)
if dist.get_rank() == 0 and average:
# only main process gets accumulated, so only divide by
# world_size in this case
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
|