File size: 6,740 Bytes
c310e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import bisect
import logging

import torch.utils.data
from maskrcnn_benchmark.utils.comm import get_world_size
from maskrcnn_benchmark.utils.imports import import_file

from . import datasets as D
from . import samplers

from .collate_batch import BatchCollator
from .transforms import build_transforms


def build_dataset(cfg, dataset_list, transforms, dataset_catalog, is_train=True):
    """
    Arguments:
        dataset_list (list[str]): Contains the names of the datasets, i.e.,
            coco_2014_trian, coco_2014_val, etc
        transforms (callable): transforms to apply to each (image, target) sample
        dataset_catalog (DatasetCatalog): contains the information on how to
            construct a dataset.
        is_train (bool): whether to setup the dataset for training or testing
    """
    if not isinstance(dataset_list, (list, tuple)):
        raise RuntimeError(
                "dataset_list should be a list of strings, got {}".format(dataset_list))
    datasets = []
    for dataset_name in dataset_list:
        data = dataset_catalog.get(dataset_name)
        factory = getattr(D, data["factory"])
        args = data["args"]
        # for COCODataset, we want to remove images without annotations
        # during training
        if data["factory"] == "COCODataset":
            args["remove_images_without_annotations"] = is_train
        args["transforms"] = transforms
        args["ignore_difficult"] = cfg.DATASETS.IGNORE_DIFFICULT
        # make dataset from factory
        dataset = factory(**args)
        datasets.append(dataset)

    # for testing, return a list of datasets
    if not is_train:
        return datasets

    # for training, concatenate all datasets into a single one
    dataset = datasets[0]
    if len(datasets) > 1:
        dataset = D.MixDataset(datasets, cfg.DATASETS.RATIOS)
    #    dataset = D.ConcatDataset(datasets)

    return [dataset]


def make_data_sampler(dataset, shuffle, distributed):
    if distributed:
        return samplers.DistributedSampler(dataset, shuffle=shuffle)
    if shuffle:
        sampler = torch.utils.data.sampler.RandomSampler(dataset)
    else:
        sampler = torch.utils.data.sampler.SequentialSampler(dataset)
    return sampler


def _quantize(x, bins):
    bins = sorted(bins.copy())
    quantized = list(map(lambda y: bisect.bisect_right(bins, y), x))
    return quantized


def _compute_aspect_ratios(dataset):
    aspect_ratios = []
    for i in range(len(dataset)):
        img_info = dataset.get_img_info(i)
        aspect_ratio = float(img_info["height"]) / float(img_info["width"])
        aspect_ratios.append(aspect_ratio)
    return aspect_ratios


def make_batch_data_sampler(
    dataset, sampler, aspect_grouping, images_per_batch, num_iters=None, start_iter=0
):
    if aspect_grouping:
        if not isinstance(aspect_grouping, (list, tuple)):
            aspect_grouping = [aspect_grouping]
        aspect_ratios = _compute_aspect_ratios(dataset)
        group_ids = _quantize(aspect_ratios, aspect_grouping)
        batch_sampler = samplers.GroupedBatchSampler(
            sampler, group_ids, images_per_batch, drop_uneven=False
        )
    else:
        batch_sampler = torch.utils.data.sampler.BatchSampler(
            sampler, images_per_batch, drop_last=False
        )
    if num_iters is not None:
        batch_sampler = samplers.IterationBasedBatchSampler(batch_sampler, num_iters, start_iter)
    return batch_sampler


def make_data_loader(cfg, is_train=True, is_distributed=False, start_iter=0):
    num_gpus = get_world_size()
    if is_train:
        images_per_batch = cfg.SOLVER.IMS_PER_BATCH
        assert (
            images_per_batch % num_gpus == 0
        ), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number "
        "of GPUs ({}) used.".format(images_per_batch, num_gpus)
        images_per_gpu = images_per_batch // num_gpus
        shuffle = True
        num_iters = cfg.SOLVER.MAX_ITER
    else:
        images_per_batch = cfg.TEST.IMS_PER_BATCH
        assert (
            images_per_batch % num_gpus == 0
        ), "TEST.IMS_PER_BATCH ({}) must be divisible by the number "
        "of GPUs ({}) used.".format(images_per_batch, num_gpus)
        images_per_gpu = images_per_batch // num_gpus
        shuffle = False if not is_distributed else True
        num_iters = None
        start_iter = 0

    if images_per_gpu > 1:
        logger = logging.getLogger(__name__)
        logger.warning(
            "When using more than one image per GPU you may encounter "
            "an out-of-memory (OOM) error if your GPU does not have "
            "sufficient memory. If this happens, you can reduce "
            "SOLVER.IMS_PER_BATCH (for training) or "
            "TEST.IMS_PER_BATCH (for inference). For training, you must "
            "also adjust the learning rate and schedule length according "
            "to the linear scaling rule. See for example: "
            "https://github.com/facebookresearch/Detectron/blob/master/configs/getting_started/tutorial_1gpu_e2e_faster_rcnn_R-50-FPN.yaml#L14"
        )

    # group images which have similar aspect ratio. In this case, we only
    # group in two cases: those with width / height > 1, and the other way around,
    # but the code supports more general grouping strategy
    aspect_grouping = [1] if cfg.DATALOADER.ASPECT_RATIO_GROUPING else []

    paths_catalog = import_file(
        "maskrcnn_benchmark.config.paths_catalog", cfg.PATHS_CATALOG, True
    )
    DatasetCatalog = paths_catalog.DatasetCatalog
    dataset_list = cfg.DATASETS.TRAIN if is_train else cfg.DATASETS.TEST

    transforms = build_transforms(cfg, is_train)
    datasets = build_dataset(cfg,dataset_list, transforms, DatasetCatalog, is_train)

    data_loaders = []
    for dataset in datasets:
        '''
        for i in range(20):
            a=dataset[i]
        ipdb.set_trace()
        '''
        sampler = make_data_sampler(dataset, shuffle, is_distributed)
        batch_sampler = make_batch_data_sampler(
            dataset, sampler, aspect_grouping, images_per_gpu, num_iters, start_iter
        )
        collator = BatchCollator(cfg.DATALOADER.SIZE_DIVISIBILITY)
        num_workers = cfg.DATALOADER.NUM_WORKERS
        data_loader = torch.utils.data.DataLoader(
            dataset,
            num_workers=num_workers,
            batch_sampler=batch_sampler,
            collate_fn=collator,
        )
        data_loaders.append(data_loader)
    if is_train:
        # during training, a single (possibly concatenated) data_loader is returned
        assert len(data_loaders) == 1
        return data_loaders[0]
    return data_loaders