Spaces:
Runtime error
Runtime error
File size: 9,628 Bytes
c310e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import cv2
import torch
from torchvision import transforms as T
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.utils.chars import getstr_grid, get_tight_rect
from PIL import Image
import numpy as np
import argparse
class TextDemo(object):
def __init__(
self,
cfg,
confidence_threshold=0.7,
min_image_size=224,
output_polygon=True
):
self.cfg = cfg.clone()
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.min_image_size = min_image_size
checkpointer = DetectronCheckpointer(cfg, self.model)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.transforms = self.build_transform()
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.output_polygon = output_polygon
def build_transform(self):
"""
Creates a basic transformation that was used to train the models
"""
cfg = self.cfg
# we are loading images with OpenCV, so we don't need to convert them
# to BGR, they are already! So all we need to do is to normalize
# by 255 if we want to convert to BGR255 format, or flip the channels
# if we want it to be in RGB in [0-1] range.
if cfg.INPUT.TO_BGR255:
to_bgr_transform = T.Lambda(lambda x: x * 255)
else:
to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])
normalize_transform = T.Normalize(
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
)
transform = T.Compose(
[
T.ToPILImage(),
T.Resize(self.min_image_size),
T.ToTensor(),
to_bgr_transform,
normalize_transform,
]
)
return transform
def run_on_opencv_image(self, image):
"""
Arguments:
image (np.ndarray): an image as returned by OpenCV
Returns:
result_polygons (list): detection results
result_words (list): recognition results
"""
result_polygons, result_words = self.compute_prediction(image)
return result_polygons, result_words
def compute_prediction(self, original_image):
# apply pre-processing to image
image = self.transforms(original_image)
# convert to an ImageList, padded so that it is divisible by
# cfg.DATALOADER.SIZE_DIVISIBILITY
image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY)
image_list = image_list.to(self.device)
# compute predictions
with torch.no_grad():
predictions, _, _ = self.model(image_list)
global_predictions = predictions[0]
char_predictions = predictions[1]
char_mask = char_predictions['char_mask']
char_boxes = char_predictions['boxes']
words, rec_scores = self.process_char_mask(char_mask, char_boxes)
seq_words = char_predictions['seq_outputs']
seq_scores = char_predictions['seq_scores']
global_predictions = [o.to(self.cpu_device) for o in global_predictions]
# always single image is passed at a time
global_prediction = global_predictions[0]
# reshape prediction (a BoxList) into the original image size
height, width = original_image.shape[:-1]
global_prediction = global_prediction.resize((width, height))
boxes = global_prediction.bbox.tolist()
scores = global_prediction.get_field("scores").tolist()
masks = global_prediction.get_field("mask").cpu().numpy()
result_polygons = []
result_words = []
for k, box in enumerate(boxes):
score = scores[k]
if score < self.confidence_threshold:
continue
box = list(map(int, box))
mask = masks[k,0,:,:]
polygon = self.mask2polygon(mask, box, original_image.shape, threshold=0.5, output_polygon=self.output_polygon)
if polygon is None:
polygon = [box[0], box[1], box[2], box[1], box[2], box[3], box[0], box[3]]
result_polygons.append(polygon)
word = words[k]
rec_score = rec_scores[k]
seq_word = seq_words[k]
seq_char_scores = seq_scores[k]
seq_score = sum(seq_char_scores) / float(len(seq_char_scores))
if seq_score > rec_score:
result_words.append(seq_word)
else:
result_words.append(word)
return result_polygons, result_words
def process_char_mask(self, char_masks, boxes, threshold=192):
texts, rec_scores = [], []
for index in range(char_masks.shape[0]):
box = list(boxes[index])
box = list(map(int, box))
text, rec_score, _, _ = getstr_grid(char_masks[index,:,:,:].copy(), box, threshold=threshold)
texts.append(text)
rec_scores.append(rec_score)
return texts, rec_scores
def mask2polygon(self, mask, box, im_size, threshold=0.5, output_polygon=True):
# mask 32*128
image_width, image_height = im_size[1], im_size[0]
box_h = box[3] - box[1]
box_w = box[2] - box[0]
cls_polys = (mask*255).astype(np.uint8)
poly_map = np.array(Image.fromarray(cls_polys).resize((box_w, box_h)))
poly_map = poly_map.astype(np.float32) / 255
poly_map=cv2.GaussianBlur(poly_map,(3,3),sigmaX=3)
ret, poly_map = cv2.threshold(poly_map,0.5,1,cv2.THRESH_BINARY)
if output_polygon:
SE1=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
poly_map = cv2.erode(poly_map,SE1)
poly_map = cv2.dilate(poly_map,SE1);
poly_map = cv2.morphologyEx(poly_map,cv2.MORPH_CLOSE,SE1)
try:
_, contours, _ = cv2.findContours((poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
except:
contours, _ = cv2.findContours((poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
if len(contours)==0:
print(contours)
print(len(contours))
return None
max_area=0
max_cnt = contours[0]
for cnt in contours:
area=cv2.contourArea(cnt)
if area > max_area:
max_area = area
max_cnt = cnt
perimeter = cv2.arcLength(max_cnt,True)
epsilon = 0.01*cv2.arcLength(max_cnt,True)
approx = cv2.approxPolyDP(max_cnt,epsilon,True)
pts = approx.reshape((-1,2))
pts[:,0] = pts[:,0] + box[0]
pts[:,1] = pts[:,1] + box[1]
polygon = list(pts.reshape((-1,)))
polygon = list(map(int, polygon))
if len(polygon)<6:
return None
else:
SE1=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
poly_map = cv2.erode(poly_map,SE1)
poly_map = cv2.dilate(poly_map,SE1);
poly_map = cv2.morphologyEx(poly_map,cv2.MORPH_CLOSE,SE1)
idy,idx=np.where(poly_map == 1)
xy=np.vstack((idx,idy))
xy=np.transpose(xy)
hull = cv2.convexHull(xy, clockwise=True)
#reverse order of points.
if hull is None:
return None
hull=hull[::-1]
#find minimum area bounding box.
rect = cv2.minAreaRect(hull)
corners = cv2.boxPoints(rect)
corners = np.array(corners, dtype="int")
pts = get_tight_rect(corners, box[0], box[1], image_height, image_width, 1)
polygon = [x * 1.0 for x in pts]
polygon = list(map(int, polygon))
return polygon
def visualization(self, image, polygons, words):
for polygon, word in zip(polygons, words):
pts = np.array(polygon, np.int32)
pts = pts.reshape((-1,1,2))
xmin = min(pts[:,0,0])
ymin = min(pts[:,0,1])
cv2.polylines(image,[pts],True,(0,0,255))
cv2.putText(image, word, (xmin, ymin), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
def main(args):
# update the config options with the config file
cfg.merge_from_file(args.config_file)
# manual override some options
# cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
text_demo = TextDemo(
cfg,
min_image_size=800,
confidence_threshold=0.7,
output_polygon=True
)
# load image and then run prediction
image = cv2.imread(args.image_path)
result_polygons, result_words = text_demo.run_on_opencv_image(image)
text_demo.visualization(image, result_polygons, result_words)
cv2.imwrite(args.visu_path, image)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='parameters for demo')
parser.add_argument("--config-file", type=str, default='configs/mixtrain/seg_rec_poly_fuse_feature.yaml')
parser.add_argument("--image_path", type=str, default='./demo_images/demo.jpg')
parser.add_argument("--visu_path", type=str, default='./demo_images/demo_results.jpg')
args = parser.parse_args()
main(args) |