Spaces:
Runtime error
Runtime error
File size: 14,732 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# Copyright (c) OpenMMLab. All rights reserved.
import io
import json
import os
import platform
import random
import sys
import tempfile
from pathlib import Path
from unittest import mock
import mmcv
import numpy as np
import pytest
import torch
from mmocr.apis import init_detector
from mmocr.datasets.kie_dataset import KIEDataset
from mmocr.utils.ocr import MMOCR
def test_ocr_init_errors():
# Test assertions
with pytest.raises(ValueError):
_ = MMOCR(det='test')
with pytest.raises(ValueError):
_ = MMOCR(recog='test')
with pytest.raises(ValueError):
_ = MMOCR(kie='test')
with pytest.raises(NotImplementedError):
_ = MMOCR(det=None, recog=None, kie='SDMGR')
with pytest.raises(NotImplementedError):
_ = MMOCR(det='DB_r18', recog=None, kie='SDMGR')
cfg_default_prefix = os.path.join(str(Path.cwd()), 'configs/')
@pytest.mark.parametrize(
'det, recog, kie, config_dir, gt_cfg, gt_ckpt',
[('DB_r18', None, '', '',
cfg_default_prefix + 'textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py',
'https://download.openmmlab.com/mmocr/textdet/'
'dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth'),
(None, 'CRNN', '', '',
cfg_default_prefix + 'textrecog/crnn/crnn_academic_dataset.py',
'https://download.openmmlab.com/mmocr/textrecog/'
'crnn/crnn_academic-a723a1c5.pth'),
('DB_r18', 'CRNN', 'SDMGR', '', [
cfg_default_prefix +
'textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py',
cfg_default_prefix + 'textrecog/crnn/crnn_academic_dataset.py',
cfg_default_prefix + 'kie/sdmgr/sdmgr_unet16_60e_wildreceipt.py'
], [
'https://download.openmmlab.com/mmocr/textdet/'
'dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth',
'https://download.openmmlab.com/mmocr/textrecog/'
'crnn/crnn_academic-a723a1c5.pth',
'https://download.openmmlab.com/mmocr/kie/'
'sdmgr/sdmgr_unet16_60e_wildreceipt_20210520-7489e6de.pth'
]),
('DB_r18', 'CRNN', 'SDMGR', 'test/', [
'test/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py',
'test/textrecog/crnn/crnn_academic_dataset.py',
'test/kie/sdmgr/sdmgr_unet16_60e_wildreceipt.py'
], [
'https://download.openmmlab.com/mmocr/textdet/'
'dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth',
'https://download.openmmlab.com/mmocr/textrecog/'
'crnn/crnn_academic-a723a1c5.pth',
'https://download.openmmlab.com/mmocr/kie/'
'sdmgr/sdmgr_unet16_60e_wildreceipt_20210520-7489e6de.pth'
])],
)
@mock.patch('mmocr.utils.ocr.init_detector')
@mock.patch('mmocr.utils.ocr.build_detector')
@mock.patch('mmocr.utils.ocr.Config.fromfile')
@mock.patch('mmocr.utils.ocr.load_checkpoint')
def test_ocr_init(mock_loading, mock_config, mock_build_detector,
mock_init_detector, det, recog, kie, config_dir, gt_cfg,
gt_ckpt):
def loadcheckpoint_assert(*args, **kwargs):
assert args[1] == gt_ckpt[-1]
assert kwargs['map_location'] == torch.device(
'cuda' if torch.cuda.is_available() else 'cpu')
mock_loading.side_effect = loadcheckpoint_assert
with mock.patch('mmocr.utils.ocr.revert_sync_batchnorm'):
if kie == '':
if config_dir == '':
_ = MMOCR(det=det, recog=recog)
else:
_ = MMOCR(det=det, recog=recog, config_dir=config_dir)
else:
if config_dir == '':
_ = MMOCR(det=det, recog=recog, kie=kie)
else:
_ = MMOCR(det=det, recog=recog, kie=kie, config_dir=config_dir)
if isinstance(gt_cfg, str):
gt_cfg = [gt_cfg]
if isinstance(gt_ckpt, str):
gt_ckpt = [gt_ckpt]
i_range = range(len(gt_cfg))
if kie:
i_range = i_range[:-1]
mock_config.assert_called_with(gt_cfg[-1])
mock_build_detector.assert_called_once()
mock_loading.assert_called_once()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
calls = [
mock.call(gt_cfg[i], gt_ckpt[i], device=device) for i in i_range
]
mock_init_detector.assert_has_calls(calls)
@pytest.mark.parametrize(
'det, det_config, det_ckpt, recog, recog_config, recog_ckpt,'
'kie, kie_config, kie_ckpt, config_dir, gt_cfg, gt_ckpt',
[('DB_r18', 'test.py', '', 'CRNN', 'test.py', '', 'SDMGR', 'test.py', '',
'configs/', ['test.py', 'test.py', 'test.py'], [
'https://download.openmmlab.com/mmocr/textdet/'
'dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth',
'https://download.openmmlab.com/mmocr/textrecog/'
'crnn/crnn_academic-a723a1c5.pth',
'https://download.openmmlab.com/mmocr/kie/'
'sdmgr/sdmgr_unet16_60e_wildreceipt_20210520-7489e6de.pth'
]),
('DB_r18', '', 'test.ckpt', 'CRNN', '', 'test.ckpt', 'SDMGR', '',
'test.ckpt', '', [
'textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py',
'textrecog/crnn/crnn_academic_dataset.py',
'kie/sdmgr/sdmgr_unet16_60e_wildreceipt.py'
], ['test.ckpt', 'test.ckpt', 'test.ckpt']),
('DB_r18', 'test.py', 'test.ckpt', 'CRNN', 'test.py', 'test.ckpt',
'SDMGR', 'test.py', 'test.ckpt', '', ['test.py', 'test.py', 'test.py'],
['test.ckpt', 'test.ckpt', 'test.ckpt'])])
@mock.patch('mmocr.utils.ocr.init_detector')
@mock.patch('mmocr.utils.ocr.build_detector')
@mock.patch('mmocr.utils.ocr.Config.fromfile')
@mock.patch('mmocr.utils.ocr.load_checkpoint')
def test_ocr_init_customize_config(mock_loading, mock_config,
mock_build_detector, mock_init_detector,
det, det_config, det_ckpt, recog,
recog_config, recog_ckpt, kie, kie_config,
kie_ckpt, config_dir, gt_cfg, gt_ckpt):
def loadcheckpoint_assert(*args, **kwargs):
assert args[1] == gt_ckpt[-1]
mock_loading.side_effect = loadcheckpoint_assert
with mock.patch('mmocr.utils.ocr.revert_sync_batchnorm'):
_ = MMOCR(
det=det,
det_config=det_config,
det_ckpt=det_ckpt,
recog=recog,
recog_config=recog_config,
recog_ckpt=recog_ckpt,
kie=kie,
kie_config=kie_config,
kie_ckpt=kie_ckpt,
config_dir=config_dir)
i_range = range(len(gt_cfg))
if kie:
i_range = i_range[:-1]
mock_config.assert_called_with(gt_cfg[-1])
mock_build_detector.assert_called_once()
mock_loading.assert_called_once()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
calls = [
mock.call(gt_cfg[i], gt_ckpt[i], device=device) for i in i_range
]
mock_init_detector.assert_has_calls(calls)
@mock.patch('mmocr.utils.ocr.init_detector')
@mock.patch('mmocr.utils.ocr.build_detector')
@mock.patch('mmocr.utils.ocr.Config.fromfile')
@mock.patch('mmocr.utils.ocr.load_checkpoint')
@mock.patch('mmocr.utils.ocr.model_inference')
def test_single_inference(mock_model_inference, mock_loading, mock_config,
mock_build_detector, mock_init_detector):
def dummy_inference(model, arr, batch_mode):
return arr
mock_model_inference.side_effect = dummy_inference
mmocr = MMOCR()
data = list(range(20))
model = 'dummy'
res = mmocr.single_inference(model, data, batch_mode=False)
assert (data == res)
mock_model_inference.reset_mock()
res = mmocr.single_inference(model, data, batch_mode=True)
assert (data == res)
mock_model_inference.assert_called_once()
mock_model_inference.reset_mock()
res = mmocr.single_inference(model, data, batch_mode=True, batch_size=100)
assert (data == res)
mock_model_inference.assert_called_once()
mock_model_inference.reset_mock()
res = mmocr.single_inference(model, data, batch_mode=True, batch_size=3)
assert (data == res)
@mock.patch('mmocr.utils.ocr.init_detector')
@mock.patch('mmocr.utils.ocr.load_checkpoint')
def MMOCR_testobj(mock_loading, mock_init_detector, **kwargs):
# returns an MMOCR object bypassing the
# checkpoint initialization step
def init_detector_skip_ckpt(config, ckpt, device):
return init_detector(config, device=device)
def modify_kie_class(model, ckpt, map_location):
model.class_list = 'tests/data/kie_toy_dataset/class_list.txt'
mock_init_detector.side_effect = init_detector_skip_ckpt
mock_loading.side_effect = modify_kie_class
kwargs['det'] = kwargs.get('det', 'DB_r18')
kwargs['recog'] = kwargs.get('recog', 'CRNN')
kwargs['kie'] = kwargs.get('kie', 'SDMGR')
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
return MMOCR(**kwargs, device=device)
@pytest.mark.skipif(
platform.system() == 'Windows',
reason='Win container on Github Action does not have enough RAM to run')
@mock.patch('mmocr.utils.ocr.KIEDataset')
def test_readtext(mock_kiedataset):
# Fixing the weights of models to prevent them from
# generating invalid results and triggering other assertion errors
torch.manual_seed(4)
random.seed(4)
mmocr = MMOCR_testobj()
mmocr_det = MMOCR_testobj(kie='', recog='')
mmocr_recog = MMOCR_testobj(kie='', det='', recog='CRNN_TPS')
mmocr_det_recog = MMOCR_testobj(kie='')
def readtext(imgs, ocr_obj=mmocr, **kwargs):
# filename can be different depends on how
# the the image was loaded
e2e_res = ocr_obj.readtext(imgs, **kwargs)
for res in e2e_res:
res.pop('filename')
return e2e_res
def kiedataset_with_test_dict(**kwargs):
kwargs['dict_file'] = 'tests/data/kie_toy_dataset/dict.txt'
return KIEDataset(**kwargs)
mock_kiedataset.side_effect = kiedataset_with_test_dict
# Single image
toy_dir = 'tests/data/toy_dataset/imgs/test/'
toy_img1_path = toy_dir + 'img_1.jpg'
str_e2e_res = readtext(toy_img1_path)
toy_img1 = mmcv.imread(toy_img1_path)
np_e2e_res = readtext(toy_img1)
assert str_e2e_res == np_e2e_res
# Multiple images
toy_img2_path = toy_dir + 'img_2.jpg'
toy_img2 = mmcv.imread(toy_img2_path)
toy_imgs = [toy_img1, toy_img2]
toy_img_paths = [toy_img1_path, toy_img2_path]
np_e2e_results = readtext(toy_imgs)
str_e2e_results = readtext(toy_img_paths)
str_tuple_e2e_results = readtext(tuple(toy_img_paths))
assert np_e2e_results == str_e2e_results
assert str_e2e_results == str_tuple_e2e_results
# Batch mode test
toy_imgs.append(toy_dir + 'img_3.jpg')
e2e_res = readtext(toy_imgs)
full_batch_e2e_res = readtext(toy_imgs, batch_mode=True)
assert full_batch_e2e_res == e2e_res
batch_e2e_res = readtext(
toy_imgs, batch_mode=True, recog_batch_size=2, det_batch_size=2)
assert batch_e2e_res == full_batch_e2e_res
# Batch mode test with DBNet only
full_batch_det_res = mmocr_det.readtext(toy_imgs, batch_mode=True)
det_res = mmocr_det.readtext(toy_imgs)
batch_det_res = mmocr_det.readtext(
toy_imgs, batch_mode=True, single_batch_size=2)
assert len(full_batch_det_res) == len(det_res)
assert len(batch_det_res) == len(det_res)
assert all([
np.allclose(full_batch_det_res[i]['boundary_result'],
det_res[i]['boundary_result'])
for i in range(len(full_batch_det_res))
])
assert all([
np.allclose(batch_det_res[i]['boundary_result'],
det_res[i]['boundary_result'])
for i in range(len(batch_det_res))
])
# Batch mode test with CRNN_TPS only (CRNN doesn't support batch inference)
full_batch_recog_res = mmocr_recog.readtext(toy_imgs, batch_mode=True)
recog_res = mmocr_recog.readtext(toy_imgs)
batch_recog_res = mmocr_recog.readtext(
toy_imgs, batch_mode=True, single_batch_size=2)
full_batch_recog_res.sort(key=lambda x: x['text'])
batch_recog_res.sort(key=lambda x: x['text'])
recog_res.sort(key=lambda x: x['text'])
assert np.all([
np.allclose(full_batch_recog_res[i]['score'], recog_res[i]['score'])
for i in range(len(full_batch_recog_res))
])
assert np.all([
np.allclose(batch_recog_res[i]['score'], recog_res[i]['score'])
for i in range(len(full_batch_recog_res))
])
# Test export
with tempfile.TemporaryDirectory() as tmpdirname:
mmocr.readtext(toy_imgs, export=tmpdirname)
assert len(os.listdir(tmpdirname)) == len(toy_imgs)
with tempfile.TemporaryDirectory() as tmpdirname:
mmocr_det.readtext(toy_imgs, export=tmpdirname)
assert len(os.listdir(tmpdirname)) == len(toy_imgs)
with tempfile.TemporaryDirectory() as tmpdirname:
mmocr_recog.readtext(toy_imgs, export=tmpdirname)
assert len(os.listdir(tmpdirname)) == len(toy_imgs)
# Test output
# Single image
with tempfile.TemporaryDirectory() as tmpdirname:
tmp_output = os.path.join(tmpdirname, '1.jpg')
mmocr.readtext(toy_imgs[0], output=tmp_output)
assert os.path.exists(tmp_output)
# Multiple images
with tempfile.TemporaryDirectory() as tmpdirname:
mmocr.readtext(toy_imgs, output=tmpdirname)
assert len(os.listdir(tmpdirname)) == len(toy_imgs)
# Test imshow
with mock.patch('mmocr.utils.ocr.mmcv.imshow') as mock_imshow:
mmocr.readtext(toy_img1_path, imshow=True)
mock_imshow.assert_called_once()
mock_imshow.reset_mock()
mmocr.readtext(toy_imgs, imshow=True)
assert mock_imshow.call_count == len(toy_imgs)
# Test print_result
with io.StringIO() as capturedOutput:
sys.stdout = capturedOutput
res = mmocr.readtext(toy_imgs, print_result=True)
assert json.loads('[%s]' % capturedOutput.getvalue().strip().replace(
'\n\n', ',').replace("'", '"')) == res
sys.stdout = sys.__stdout__
with io.StringIO() as capturedOutput:
sys.stdout = capturedOutput
res = mmocr.readtext(toy_imgs, details=True, print_result=True)
assert json.loads('[%s]' % capturedOutput.getvalue().strip().replace(
'\n\n', ',').replace("'", '"')) == res
sys.stdout = sys.__stdout__
# Test merge
with mock.patch('mmocr.utils.ocr.stitch_boxes_into_lines') as mock_merge:
mmocr_det_recog.readtext(toy_imgs, merge=True)
assert mock_merge.call_count == len(toy_imgs)
|