Spaces:
Runtime error
Runtime error
File size: 27,847 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
#!/usr/bin/env python
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
import mmcv
import numpy as np
import torch
from mmcv.image.misc import tensor2imgs
from mmcv.runner import load_checkpoint
from mmcv.utils.config import Config
from mmocr.apis import init_detector
from mmocr.apis.inference import model_inference
from mmocr.core.visualize import det_recog_show_result
from mmocr.datasets.kie_dataset import KIEDataset
from mmocr.datasets.pipelines.crop import crop_img
from mmocr.models import build_detector
from mmocr.utils.box_util import stitch_boxes_into_lines
from mmocr.utils.fileio import list_from_file
from mmocr.utils.model import revert_sync_batchnorm
# Parse CLI arguments
def parse_args():
parser = ArgumentParser()
parser.add_argument(
'img', type=str, help='Input image file or folder path.')
parser.add_argument(
'--output',
type=str,
default='',
help='Output file/folder name for visualization')
parser.add_argument(
'--det',
type=str,
default='PANet_IC15',
help='Pretrained text detection algorithm')
parser.add_argument(
'--det-config',
type=str,
default='',
help='Path to the custom config file of the selected det model. It '
'overrides the settings in det')
parser.add_argument(
'--det-ckpt',
type=str,
default='',
help='Path to the custom checkpoint file of the selected det model. '
'It overrides the settings in det')
parser.add_argument(
'--recog',
type=str,
default='SEG',
help='Pretrained text recognition algorithm')
parser.add_argument(
'--recog-config',
type=str,
default='',
help='Path to the custom config file of the selected recog model. It'
'overrides the settings in recog')
parser.add_argument(
'--recog-ckpt',
type=str,
default='',
help='Path to the custom checkpoint file of the selected recog model. '
'It overrides the settings in recog')
parser.add_argument(
'--kie',
type=str,
default='',
help='Pretrained key information extraction algorithm')
parser.add_argument(
'--kie-config',
type=str,
default='',
help='Path to the custom config file of the selected kie model. It'
'overrides the settings in kie')
parser.add_argument(
'--kie-ckpt',
type=str,
default='',
help='Path to the custom checkpoint file of the selected kie model. '
'It overrides the settings in kie')
parser.add_argument(
'--config-dir',
type=str,
default=os.path.join(str(Path.cwd()), 'configs/'),
help='Path to the config directory where all the config files '
'are located. Defaults to "configs/"')
parser.add_argument(
'--batch-mode',
action='store_true',
help='Whether use batch mode for inference')
parser.add_argument(
'--recog-batch-size',
type=int,
default=0,
help='Batch size for text recognition')
parser.add_argument(
'--det-batch-size',
type=int,
default=0,
help='Batch size for text detection')
parser.add_argument(
'--single-batch-size',
type=int,
default=0,
help='Batch size for separate det/recog inference')
parser.add_argument(
'--device', default=None, help='Device used for inference.')
parser.add_argument(
'--export',
type=str,
default='',
help='Folder where the results of each image are exported')
parser.add_argument(
'--export-format',
type=str,
default='json',
help='Format of the exported result file(s)')
parser.add_argument(
'--details',
action='store_true',
help='Whether include the text boxes coordinates and confidence values'
)
parser.add_argument(
'--imshow',
action='store_true',
help='Whether show image with OpenCV.')
parser.add_argument(
'--print-result',
action='store_true',
help='Prints the recognised text')
parser.add_argument(
'--merge', action='store_true', help='Merge neighboring boxes')
parser.add_argument(
'--merge-xdist',
type=float,
default=20,
help='The maximum x-axis distance to merge boxes')
args = parser.parse_args()
if args.det == 'None':
args.det = None
if args.recog == 'None':
args.recog = None
# Warnings
if args.merge and not (args.det and args.recog):
warnings.warn(
'Box merging will not work if the script is not'
' running in detection + recognition mode.', UserWarning)
if not os.path.samefile(args.config_dir, os.path.join(str(
Path.cwd()))) and (args.det_config != ''
or args.recog_config != ''):
warnings.warn(
'config_dir will be overridden by det-config or recog-config.',
UserWarning)
return args
class MMOCR:
def __init__(self,
det='PANet_IC15',
det_config='',
det_ckpt='',
recog='SEG',
recog_config='',
recog_ckpt='',
kie='',
kie_config='',
kie_ckpt='',
config_dir=os.path.join(str(Path.cwd()), 'configs/'),
device=None,
**kwargs):
textdet_models = {
'DB_r18': {
'config':
'dbnet/dbnet_r18_fpnc_1200e_icdar2015.py',
'ckpt':
'dbnet/'
'dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth'
},
'DB_r50': {
'config':
'dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py',
'ckpt':
'dbnet/'
'dbnet_r50dcnv2_fpnc_sbn_1200e_icdar2015_20211025-9fe3b590.pth'
},
'DRRG': {
'config':
'drrg/drrg_r50_fpn_unet_1200e_ctw1500.py',
'ckpt':
'drrg/drrg_r50_fpn_unet_1200e_ctw1500_20211022-fb30b001.pth'
},
'FCE_IC15': {
'config':
'fcenet/fcenet_r50_fpn_1500e_icdar2015.py',
'ckpt':
'fcenet/fcenet_r50_fpn_1500e_icdar2015_20211022-daefb6ed.pth'
},
'FCE_CTW_DCNv2': {
'config':
'fcenet/fcenet_r50dcnv2_fpn_1500e_ctw1500.py',
'ckpt':
'fcenet/' +
'fcenet_r50dcnv2_fpn_1500e_ctw1500_20211022-e326d7ec.pth'
},
'MaskRCNN_CTW': {
'config':
'maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500.py',
'ckpt':
'maskrcnn/'
'mask_rcnn_r50_fpn_160e_ctw1500_20210219-96497a76.pth'
},
'MaskRCNN_IC15': {
'config':
'maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py',
'ckpt':
'maskrcnn/'
'mask_rcnn_r50_fpn_160e_icdar2015_20210219-8eb340a3.pth'
},
'MaskRCNN_IC17': {
'config':
'maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017.py',
'ckpt':
'maskrcnn/'
'mask_rcnn_r50_fpn_160e_icdar2017_20210218-c6ec3ebb.pth'
},
'PANet_CTW': {
'config':
'panet/panet_r18_fpem_ffm_600e_ctw1500.py',
'ckpt':
'panet/'
'panet_r18_fpem_ffm_sbn_600e_ctw1500_20210219-3b3a9aa3.pth'
},
'PANet_IC15': {
'config':
'panet/panet_r18_fpem_ffm_600e_icdar2015.py',
'ckpt':
'panet/'
'panet_r18_fpem_ffm_sbn_600e_icdar2015_20210219-42dbe46a.pth'
},
'PS_CTW': {
'config': 'psenet/psenet_r50_fpnf_600e_ctw1500.py',
'ckpt':
'psenet/psenet_r50_fpnf_600e_ctw1500_20210401-216fed50.pth'
},
'PS_IC15': {
'config':
'psenet/psenet_r50_fpnf_600e_icdar2015.py',
'ckpt':
'psenet/psenet_r50_fpnf_600e_icdar2015_pretrain-eefd8fe6.pth'
},
'TextSnake': {
'config':
'textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py',
'ckpt':
'textsnake/textsnake_r50_fpn_unet_1200e_ctw1500-27f65b64.pth'
}
}
textrecog_models = {
'CRNN': {
'config': 'crnn/crnn_academic_dataset.py',
'ckpt': 'crnn/crnn_academic-a723a1c5.pth'
},
'SAR': {
'config': 'sar/sar_r31_parallel_decoder_academic.py',
'ckpt': 'sar/sar_r31_parallel_decoder_academic-dba3a4a3.pth'
},
'SAR_CN': {
'config':
'sar/sar_r31_parallel_decoder_chinese.py',
'ckpt':
'sar/sar_r31_parallel_decoder_chineseocr_20210507-b4be8214.pth'
},
'NRTR_1/16-1/8': {
'config': 'nrtr/nrtr_r31_1by16_1by8_academic.py',
'ckpt':
'nrtr/nrtr_r31_1by16_1by8_academic_20211124-f60cebf4.pth'
},
'NRTR_1/8-1/4': {
'config': 'nrtr/nrtr_r31_1by8_1by4_academic.py',
'ckpt':
'nrtr/nrtr_r31_1by8_1by4_academic_20211123-e1fdb322.pth'
},
'RobustScanner': {
'config': 'robust_scanner/robustscanner_r31_academic.py',
'ckpt': 'robustscanner/robustscanner_r31_academic-5f05874f.pth'
},
'SATRN': {
'config': 'satrn/satrn_academic.py',
'ckpt': 'satrn/satrn_academic_20211009-cb8b1580.pth'
},
'SATRN_sm': {
'config': 'satrn/satrn_small.py',
'ckpt': 'satrn/satrn_small_20211009-2cf13355.pth'
},
'ABINet': {
'config': 'abinet/abinet_academic.py',
'ckpt': 'abinet/abinet_academic-f718abf6.pth'
},
'SEG': {
'config': 'seg/seg_r31_1by16_fpnocr_academic.py',
'ckpt': 'seg/seg_r31_1by16_fpnocr_academic-72235b11.pth'
},
'CRNN_TPS': {
'config': 'tps/crnn_tps_academic_dataset.py',
'ckpt': 'tps/crnn_tps_academic_dataset_20210510-d221a905.pth'
}
}
kie_models = {
'SDMGR': {
'config': 'sdmgr/sdmgr_unet16_60e_wildreceipt.py',
'ckpt':
'sdmgr/sdmgr_unet16_60e_wildreceipt_20210520-7489e6de.pth'
}
}
self.td = det
self.tr = recog
self.kie = kie
self.device = device
if self.device is None:
self.device = torch.device(
'cuda' if torch.cuda.is_available() else 'cpu')
# Check if the det/recog model choice is valid
if self.td and self.td not in textdet_models:
raise ValueError(self.td,
'is not a supported text detection algorthm')
elif self.tr and self.tr not in textrecog_models:
raise ValueError(self.tr,
'is not a supported text recognition algorithm')
elif self.kie:
if self.kie not in kie_models:
raise ValueError(
self.kie, 'is not a supported key information extraction'
' algorithm')
elif not (self.td and self.tr):
raise NotImplementedError(
self.kie, 'has to run together'
' with text detection and recognition algorithms.')
self.detect_model = None
if self.td:
# Build detection model
if not det_config:
det_config = os.path.join(config_dir, 'textdet/',
textdet_models[self.td]['config'])
if not det_ckpt:
det_ckpt = 'https://download.openmmlab.com/mmocr/textdet/' + \
textdet_models[self.td]['ckpt']
self.detect_model = init_detector(
det_config, det_ckpt, device=self.device)
self.detect_model = revert_sync_batchnorm(self.detect_model)
self.recog_model = None
if self.tr:
# Build recognition model
if not recog_config:
recog_config = os.path.join(
config_dir, 'textrecog/',
textrecog_models[self.tr]['config'])
if not recog_ckpt:
recog_ckpt = 'https://download.openmmlab.com/mmocr/' + \
'textrecog/' + textrecog_models[self.tr]['ckpt']
self.recog_model = init_detector(
recog_config, recog_ckpt, device=self.device)
self.recog_model = revert_sync_batchnorm(self.recog_model)
self.kie_model = None
if self.kie:
# Build key information extraction model
if not kie_config:
kie_config = os.path.join(config_dir, 'kie/',
kie_models[self.kie]['config'])
if not kie_ckpt:
kie_ckpt = 'https://download.openmmlab.com/mmocr/' + \
'kie/' + kie_models[self.kie]['ckpt']
kie_cfg = Config.fromfile(kie_config)
self.kie_model = build_detector(
kie_cfg.model, test_cfg=kie_cfg.get('test_cfg'))
self.kie_model = revert_sync_batchnorm(self.kie_model)
self.kie_model.cfg = kie_cfg
load_checkpoint(self.kie_model, kie_ckpt, map_location=self.device)
# Attribute check
for model in list(filter(None, [self.recog_model, self.detect_model])):
if hasattr(model, 'module'):
model = model.module
def readtext(self,
img,
output=None,
details=False,
export=None,
export_format='json',
batch_mode=False,
recog_batch_size=0,
det_batch_size=0,
single_batch_size=0,
imshow=False,
print_result=False,
merge=False,
merge_xdist=20,
**kwargs):
args = locals().copy()
[args.pop(x, None) for x in ['kwargs', 'self']]
args = Namespace(**args)
# Input and output arguments processing
self._args_processing(args)
self.args = args
pp_result = None
# Send args and models to the MMOCR model inference API
# and call post-processing functions for the output
if self.detect_model and self.recog_model:
det_recog_result = self.det_recog_kie_inference(
self.detect_model, self.recog_model, kie_model=self.kie_model)
pp_result = self.det_recog_pp(det_recog_result)
else:
for model in list(
filter(None, [self.recog_model, self.detect_model])):
result = self.single_inference(model, args.arrays,
args.batch_mode,
args.single_batch_size)
pp_result = self.single_pp(result, model)
return pp_result
# Post processing function for end2end ocr
def det_recog_pp(self, result):
final_results = []
args = self.args
for arr, output, export, det_recog_result in zip(
args.arrays, args.output, args.export, result):
if output or args.imshow:
if self.kie_model:
res_img = det_recog_show_result(arr, det_recog_result)
else:
res_img = det_recog_show_result(
arr, det_recog_result, out_file=output)
if args.imshow and not self.kie_model:
mmcv.imshow(res_img, 'inference results')
if not args.details:
simple_res = {}
simple_res['filename'] = det_recog_result['filename']
simple_res['text'] = [
x['text'] for x in det_recog_result['result']
]
final_result = simple_res
else:
final_result = det_recog_result
if export:
mmcv.dump(final_result, export, indent=4)
if args.print_result:
print(final_result, end='\n\n')
final_results.append(final_result)
return final_results
# Post processing function for separate det/recog inference
def single_pp(self, result, model):
for arr, output, export, res in zip(self.args.arrays, self.args.output,
self.args.export, result):
if export:
mmcv.dump(res, export, indent=4)
if output or self.args.imshow:
res_img = model.show_result(arr, res, out_file=output)
if self.args.imshow:
mmcv.imshow(res_img, 'inference results')
if self.args.print_result:
print(res, end='\n\n')
return result
def generate_kie_labels(self, result, boxes, class_list):
idx_to_cls = {}
if class_list is not None:
for line in list_from_file(class_list):
class_idx, class_label = line.strip().split()
idx_to_cls[class_idx] = class_label
max_value, max_idx = torch.max(result['nodes'].detach().cpu(), -1)
node_pred_label = max_idx.numpy().tolist()
node_pred_score = max_value.numpy().tolist()
labels = []
for i in range(len(boxes)):
pred_label = str(node_pred_label[i])
if pred_label in idx_to_cls:
pred_label = idx_to_cls[pred_label]
pred_score = node_pred_score[i]
labels.append((pred_label, pred_score))
return labels
def visualize_kie_output(self,
model,
data,
result,
out_file=None,
show=False):
"""Visualizes KIE output."""
img_tensor = data['img'].data
img_meta = data['img_metas'].data
gt_bboxes = data['gt_bboxes'].data.numpy().tolist()
if img_tensor.dtype == torch.uint8:
# The img tensor is the raw input not being normalized
# (For SDMGR non-visual)
img = img_tensor.cpu().numpy().transpose(1, 2, 0)
else:
img = tensor2imgs(
img_tensor.unsqueeze(0), **img_meta.get('img_norm_cfg', {}))[0]
h, w, _ = img_meta.get('img_shape', img.shape)
img_show = img[:h, :w, :]
model.show_result(
img_show, result, gt_bboxes, show=show, out_file=out_file)
# End2end ocr inference pipeline
def det_recog_kie_inference(self, det_model, recog_model, kie_model=None):
end2end_res = []
# Find bounding boxes in the images (text detection)
det_result = self.single_inference(det_model, self.args.arrays,
self.args.batch_mode,
self.args.det_batch_size)
bboxes_list = [res['boundary_result'] for res in det_result]
if kie_model:
kie_dataset = KIEDataset(
dict_file=kie_model.cfg.data.test.dict_file)
# For each bounding box, the image is cropped and
# sent to the recognition model either one by one
# or all together depending on the batch_mode
for filename, arr, bboxes, out_file in zip(self.args.filenames,
self.args.arrays,
bboxes_list,
self.args.output):
img_e2e_res = {}
img_e2e_res['filename'] = filename
img_e2e_res['result'] = []
box_imgs = []
for bbox in bboxes:
box_res = {}
box_res['box'] = [round(x) for x in bbox[:-1]]
box_res['box_score'] = float(bbox[-1])
box = bbox[:8]
if len(bbox) > 9:
min_x = min(bbox[0:-1:2])
min_y = min(bbox[1:-1:2])
max_x = max(bbox[0:-1:2])
max_y = max(bbox[1:-1:2])
box = [
min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y
]
box_img = crop_img(arr, box)
if self.args.batch_mode:
box_imgs.append(box_img)
else:
recog_result = model_inference(recog_model, box_img)
text = recog_result['text']
text_score = recog_result['score']
if isinstance(text_score, list):
text_score = sum(text_score) / max(1, len(text))
box_res['text'] = text
box_res['text_score'] = text_score
img_e2e_res['result'].append(box_res)
if self.args.batch_mode:
recog_results = self.single_inference(
recog_model, box_imgs, True, self.args.recog_batch_size)
for i, recog_result in enumerate(recog_results):
text = recog_result['text']
text_score = recog_result['score']
if isinstance(text_score, (list, tuple)):
text_score = sum(text_score) / max(1, len(text))
img_e2e_res['result'][i]['text'] = text
img_e2e_res['result'][i]['text_score'] = text_score
if self.args.merge:
img_e2e_res['result'] = stitch_boxes_into_lines(
img_e2e_res['result'], self.args.merge_xdist, 0.5)
if kie_model:
annotations = copy.deepcopy(img_e2e_res['result'])
# Customized for kie_dataset, which
# assumes that boxes are represented by only 4 points
for i, ann in enumerate(annotations):
min_x = min(ann['box'][::2])
min_y = min(ann['box'][1::2])
max_x = max(ann['box'][::2])
max_y = max(ann['box'][1::2])
annotations[i]['box'] = [
min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y
]
ann_info = kie_dataset._parse_anno_info(annotations)
ann_info['ori_bboxes'] = ann_info.get('ori_bboxes',
ann_info['bboxes'])
ann_info['gt_bboxes'] = ann_info.get('gt_bboxes',
ann_info['bboxes'])
kie_result, data = model_inference(
kie_model,
arr,
ann=ann_info,
return_data=True,
batch_mode=self.args.batch_mode)
# visualize KIE results
self.visualize_kie_output(
kie_model,
data,
kie_result,
out_file=out_file,
show=self.args.imshow)
gt_bboxes = data['gt_bboxes'].data.numpy().tolist()
labels = self.generate_kie_labels(kie_result, gt_bboxes,
kie_model.class_list)
for i in range(len(gt_bboxes)):
img_e2e_res['result'][i]['label'] = labels[i][0]
img_e2e_res['result'][i]['label_score'] = labels[i][1]
end2end_res.append(img_e2e_res)
return end2end_res
# Separate det/recog inference pipeline
def single_inference(self, model, arrays, batch_mode, batch_size=0):
result = []
if batch_mode:
if batch_size == 0:
result = model_inference(model, arrays, batch_mode=True)
else:
n = batch_size
arr_chunks = [
arrays[i:i + n] for i in range(0, len(arrays), n)
]
for chunk in arr_chunks:
result.extend(
model_inference(model, chunk, batch_mode=True))
else:
for arr in arrays:
result.append(model_inference(model, arr, batch_mode=False))
return result
# Arguments pre-processing function
def _args_processing(self, args):
# Check if the input is a list/tuple that
# contains only np arrays or strings
if isinstance(args.img, (list, tuple)):
img_list = args.img
if not all([isinstance(x, (np.ndarray, str)) for x in args.img]):
raise AssertionError('Images must be strings or numpy arrays')
# Create a list of the images
if isinstance(args.img, str):
img_path = Path(args.img)
if img_path.is_dir():
img_list = [str(x) for x in img_path.glob('*')]
else:
img_list = [str(img_path)]
elif isinstance(args.img, np.ndarray):
img_list = [args.img]
# Read all image(s) in advance to reduce wasted time
# re-reading the images for visualization output
args.arrays = [mmcv.imread(x) for x in img_list]
# Create a list of filenames (used for output images and result files)
if isinstance(img_list[0], str):
args.filenames = [str(Path(x).stem) for x in img_list]
else:
args.filenames = [str(x) for x in range(len(img_list))]
# If given an output argument, create a list of output image filenames
num_res = len(img_list)
if args.output:
output_path = Path(args.output)
if output_path.is_dir():
args.output = [
str(output_path / f'out_{x}.png') for x in args.filenames
]
else:
args.output = [str(args.output)]
if args.batch_mode:
raise AssertionError('Output of multiple images inference'
' must be a directory')
else:
args.output = [None] * num_res
# If given an export argument, create a list of
# result filenames for each image
if args.export:
export_path = Path(args.export)
args.export = [
str(export_path / f'out_{x}.{args.export_format}')
for x in args.filenames
]
else:
args.export = [None] * num_res
return args
# Create an inference pipeline with parsed arguments
def main():
args = parse_args()
ocr = MMOCR(**vars(args))
ocr.readtext(**vars(args))
if __name__ == '__main__':
main()
|