File size: 8,705 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import warnings
from os import path as osp

import numpy as np
import torch
from mmdet.datasets.builder import DATASETS

from mmocr.core import compute_f1_score
from mmocr.datasets.base_dataset import BaseDataset
from mmocr.datasets.pipelines import sort_vertex8
from mmocr.utils import is_type_list, list_from_file


@DATASETS.register_module()
class KIEDataset(BaseDataset):
    """
    Args:
        ann_file (str): Annotation file path.
        pipeline (list[dict]): Processing pipeline.
        loader (dict): Dictionary to construct loader
            to load annotation infos.
        img_prefix (str, optional): Image prefix to generate full
            image path.
        test_mode (bool, optional): If True, try...except will
            be turned off in __getitem__.
        dict_file (str): Character dict file path.
        norm (float): Norm to map value from one range to another.
    """

    def __init__(self,
                 ann_file=None,
                 loader=None,
                 dict_file=None,
                 img_prefix='',
                 pipeline=None,
                 norm=10.,
                 directed=False,
                 test_mode=True,
                 **kwargs):
        if ann_file is None and loader is None:
            warnings.warn(
                'KIEDataset is only initialized as a downstream demo task '
                'of text detection and recognition '
                'without an annotation file.', UserWarning)
        else:
            super().__init__(
                ann_file,
                loader,
                pipeline,
                img_prefix=img_prefix,
                test_mode=test_mode)
            assert osp.exists(dict_file)

        self.norm = norm
        self.directed = directed
        self.dict = {
            '': 0,
            **{
                line.rstrip('\r\n'): ind
                for ind, line in enumerate(list_from_file(dict_file), 1)
            }
        }

    def pre_pipeline(self, results):
        results['img_prefix'] = self.img_prefix
        results['bbox_fields'] = []
        results['ori_texts'] = results['ann_info']['ori_texts']
        results['filename'] = osp.join(self.img_prefix,
                                       results['img_info']['filename'])
        results['ori_filename'] = results['img_info']['filename']
        # a dummy img data
        results['img'] = np.zeros((0, 0, 0), dtype=np.uint8)

    def _parse_anno_info(self, annotations):
        """Parse annotations of boxes, texts and labels for one image.
        Args:
            annotations (list[dict]): Annotations of one image, where
                each dict is for one character.

        Returns:
            dict: A dict containing the following keys:

                - bboxes (np.ndarray): Bbox in one image with shape:
                    box_num * 4. They are sorted clockwise when loading.
                - relations (np.ndarray): Relations between bbox with shape:
                    box_num * box_num * D.
                - texts (np.ndarray): Text index with shape:
                    box_num * text_max_len.
                - labels (np.ndarray): Box Labels with shape:
                    box_num * (box_num + 1).
        """

        assert is_type_list(annotations, dict)
        assert len(annotations) > 0, 'Please remove data with empty annotation'
        assert 'box' in annotations[0]
        assert 'text' in annotations[0]

        boxes, texts, text_inds, labels, edges = [], [], [], [], []
        for ann in annotations:
            box = ann['box']
            sorted_box = sort_vertex8(box[:8])
            boxes.append(sorted_box)
            text = ann['text']
            texts.append(ann['text'])
            text_ind = [self.dict[c] for c in text if c in self.dict]
            text_inds.append(text_ind)
            labels.append(ann.get('label', 0))
            edges.append(ann.get('edge', 0))

        ann_infos = dict(
            boxes=boxes,
            texts=texts,
            text_inds=text_inds,
            edges=edges,
            labels=labels)

        return self.list_to_numpy(ann_infos)

    def prepare_train_img(self, index):
        """Get training data and annotations from pipeline.

        Args:
            index (int): Index of data.

        Returns:
            dict: Training data and annotation after pipeline with new keys
                introduced by pipeline.
        """
        img_ann_info = self.data_infos[index]
        img_info = {
            'filename': img_ann_info['file_name'],
            'height': img_ann_info['height'],
            'width': img_ann_info['width']
        }
        ann_info = self._parse_anno_info(img_ann_info['annotations'])
        results = dict(img_info=img_info, ann_info=ann_info)

        self.pre_pipeline(results)

        return self.pipeline(results)

    def evaluate(self,
                 results,
                 metric='macro_f1',
                 metric_options=dict(macro_f1=dict(ignores=[])),
                 **kwargs):
        # allow some kwargs to pass through
        assert set(kwargs).issubset(['logger'])

        # Protect ``metric_options`` since it uses mutable value as default
        metric_options = copy.deepcopy(metric_options)

        metrics = metric if isinstance(metric, list) else [metric]
        allowed_metrics = ['macro_f1']
        for m in metrics:
            if m not in allowed_metrics:
                raise KeyError(f'metric {m} is not supported')

        return self.compute_macro_f1(results, **metric_options['macro_f1'])

    def compute_macro_f1(self, results, ignores=[]):
        node_preds = []
        node_gts = []
        for idx, result in enumerate(results):
            node_preds.append(result['nodes'].cpu())
            box_ann_infos = self.data_infos[idx]['annotations']
            node_gt = [box_ann_info['label'] for box_ann_info in box_ann_infos]
            node_gts.append(torch.Tensor(node_gt))

        node_preds = torch.cat(node_preds)
        node_gts = torch.cat(node_gts).int()

        node_f1s = compute_f1_score(node_preds, node_gts, ignores)

        return {
            'macro_f1': node_f1s.mean(),
        }

    def list_to_numpy(self, ann_infos):
        """Convert bboxes, relations, texts and labels to ndarray."""
        boxes, text_inds = ann_infos['boxes'], ann_infos['text_inds']
        texts = ann_infos['texts']
        boxes = np.array(boxes, np.int32)
        relations, bboxes = self.compute_relation(boxes)

        labels = ann_infos.get('labels', None)
        if labels is not None:
            labels = np.array(labels, np.int32)
            edges = ann_infos.get('edges', None)
            if edges is not None:
                labels = labels[:, None]
                edges = np.array(edges)
                edges = (edges[:, None] == edges[None, :]).astype(np.int32)
                if self.directed:
                    edges = (edges & labels == 1).astype(np.int32)
                np.fill_diagonal(edges, -1)
                labels = np.concatenate([labels, edges], -1)
        padded_text_inds = self.pad_text_indices(text_inds)

        return dict(
            bboxes=bboxes,
            relations=relations,
            texts=padded_text_inds,
            ori_texts=texts,
            labels=labels)

    def pad_text_indices(self, text_inds):
        """Pad text index to same length."""
        max_len = max([len(text_ind) for text_ind in text_inds])
        padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
        for idx, text_ind in enumerate(text_inds):
            padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
        return padded_text_inds

    def compute_relation(self, boxes):
        """Compute relation between every two boxes."""
        # Get minimal axis-aligned bounding boxes for each of the boxes
        # yapf: disable
        bboxes = np.concatenate(
            [boxes[:, 0::2].min(axis=1, keepdims=True),
             boxes[:, 1::2].min(axis=1, keepdims=True),
             boxes[:, 0::2].max(axis=1, keepdims=True),
             boxes[:, 1::2].max(axis=1, keepdims=True)],
            axis=1).astype(np.float32)
        # yapf: enable
        x1, y1 = bboxes[:, 0:1], bboxes[:, 1:2]
        x2, y2 = bboxes[:, 2:3], bboxes[:, 3:4]
        w, h = np.maximum(x2 - x1 + 1, 1), np.maximum(y2 - y1 + 1, 1)
        dx = (x1.T - x1) / self.norm
        dy = (y1.T - y1) / self.norm
        xhh, xwh = h.T / h, w.T / h
        whs = w / h + np.zeros_like(xhh)
        relation = np.stack([dx, dy, whs, xhh, xwh], -1).astype(np.float32)
        return relation, bboxes