Spaces:
Runtime error
Runtime error
File size: 8,705 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import warnings
from os import path as osp
import numpy as np
import torch
from mmdet.datasets.builder import DATASETS
from mmocr.core import compute_f1_score
from mmocr.datasets.base_dataset import BaseDataset
from mmocr.datasets.pipelines import sort_vertex8
from mmocr.utils import is_type_list, list_from_file
@DATASETS.register_module()
class KIEDataset(BaseDataset):
"""
Args:
ann_file (str): Annotation file path.
pipeline (list[dict]): Processing pipeline.
loader (dict): Dictionary to construct loader
to load annotation infos.
img_prefix (str, optional): Image prefix to generate full
image path.
test_mode (bool, optional): If True, try...except will
be turned off in __getitem__.
dict_file (str): Character dict file path.
norm (float): Norm to map value from one range to another.
"""
def __init__(self,
ann_file=None,
loader=None,
dict_file=None,
img_prefix='',
pipeline=None,
norm=10.,
directed=False,
test_mode=True,
**kwargs):
if ann_file is None and loader is None:
warnings.warn(
'KIEDataset is only initialized as a downstream demo task '
'of text detection and recognition '
'without an annotation file.', UserWarning)
else:
super().__init__(
ann_file,
loader,
pipeline,
img_prefix=img_prefix,
test_mode=test_mode)
assert osp.exists(dict_file)
self.norm = norm
self.directed = directed
self.dict = {
'': 0,
**{
line.rstrip('\r\n'): ind
for ind, line in enumerate(list_from_file(dict_file), 1)
}
}
def pre_pipeline(self, results):
results['img_prefix'] = self.img_prefix
results['bbox_fields'] = []
results['ori_texts'] = results['ann_info']['ori_texts']
results['filename'] = osp.join(self.img_prefix,
results['img_info']['filename'])
results['ori_filename'] = results['img_info']['filename']
# a dummy img data
results['img'] = np.zeros((0, 0, 0), dtype=np.uint8)
def _parse_anno_info(self, annotations):
"""Parse annotations of boxes, texts and labels for one image.
Args:
annotations (list[dict]): Annotations of one image, where
each dict is for one character.
Returns:
dict: A dict containing the following keys:
- bboxes (np.ndarray): Bbox in one image with shape:
box_num * 4. They are sorted clockwise when loading.
- relations (np.ndarray): Relations between bbox with shape:
box_num * box_num * D.
- texts (np.ndarray): Text index with shape:
box_num * text_max_len.
- labels (np.ndarray): Box Labels with shape:
box_num * (box_num + 1).
"""
assert is_type_list(annotations, dict)
assert len(annotations) > 0, 'Please remove data with empty annotation'
assert 'box' in annotations[0]
assert 'text' in annotations[0]
boxes, texts, text_inds, labels, edges = [], [], [], [], []
for ann in annotations:
box = ann['box']
sorted_box = sort_vertex8(box[:8])
boxes.append(sorted_box)
text = ann['text']
texts.append(ann['text'])
text_ind = [self.dict[c] for c in text if c in self.dict]
text_inds.append(text_ind)
labels.append(ann.get('label', 0))
edges.append(ann.get('edge', 0))
ann_infos = dict(
boxes=boxes,
texts=texts,
text_inds=text_inds,
edges=edges,
labels=labels)
return self.list_to_numpy(ann_infos)
def prepare_train_img(self, index):
"""Get training data and annotations from pipeline.
Args:
index (int): Index of data.
Returns:
dict: Training data and annotation after pipeline with new keys
introduced by pipeline.
"""
img_ann_info = self.data_infos[index]
img_info = {
'filename': img_ann_info['file_name'],
'height': img_ann_info['height'],
'width': img_ann_info['width']
}
ann_info = self._parse_anno_info(img_ann_info['annotations'])
results = dict(img_info=img_info, ann_info=ann_info)
self.pre_pipeline(results)
return self.pipeline(results)
def evaluate(self,
results,
metric='macro_f1',
metric_options=dict(macro_f1=dict(ignores=[])),
**kwargs):
# allow some kwargs to pass through
assert set(kwargs).issubset(['logger'])
# Protect ``metric_options`` since it uses mutable value as default
metric_options = copy.deepcopy(metric_options)
metrics = metric if isinstance(metric, list) else [metric]
allowed_metrics = ['macro_f1']
for m in metrics:
if m not in allowed_metrics:
raise KeyError(f'metric {m} is not supported')
return self.compute_macro_f1(results, **metric_options['macro_f1'])
def compute_macro_f1(self, results, ignores=[]):
node_preds = []
node_gts = []
for idx, result in enumerate(results):
node_preds.append(result['nodes'].cpu())
box_ann_infos = self.data_infos[idx]['annotations']
node_gt = [box_ann_info['label'] for box_ann_info in box_ann_infos]
node_gts.append(torch.Tensor(node_gt))
node_preds = torch.cat(node_preds)
node_gts = torch.cat(node_gts).int()
node_f1s = compute_f1_score(node_preds, node_gts, ignores)
return {
'macro_f1': node_f1s.mean(),
}
def list_to_numpy(self, ann_infos):
"""Convert bboxes, relations, texts and labels to ndarray."""
boxes, text_inds = ann_infos['boxes'], ann_infos['text_inds']
texts = ann_infos['texts']
boxes = np.array(boxes, np.int32)
relations, bboxes = self.compute_relation(boxes)
labels = ann_infos.get('labels', None)
if labels is not None:
labels = np.array(labels, np.int32)
edges = ann_infos.get('edges', None)
if edges is not None:
labels = labels[:, None]
edges = np.array(edges)
edges = (edges[:, None] == edges[None, :]).astype(np.int32)
if self.directed:
edges = (edges & labels == 1).astype(np.int32)
np.fill_diagonal(edges, -1)
labels = np.concatenate([labels, edges], -1)
padded_text_inds = self.pad_text_indices(text_inds)
return dict(
bboxes=bboxes,
relations=relations,
texts=padded_text_inds,
ori_texts=texts,
labels=labels)
def pad_text_indices(self, text_inds):
"""Pad text index to same length."""
max_len = max([len(text_ind) for text_ind in text_inds])
padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
for idx, text_ind in enumerate(text_inds):
padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
return padded_text_inds
def compute_relation(self, boxes):
"""Compute relation between every two boxes."""
# Get minimal axis-aligned bounding boxes for each of the boxes
# yapf: disable
bboxes = np.concatenate(
[boxes[:, 0::2].min(axis=1, keepdims=True),
boxes[:, 1::2].min(axis=1, keepdims=True),
boxes[:, 0::2].max(axis=1, keepdims=True),
boxes[:, 1::2].max(axis=1, keepdims=True)],
axis=1).astype(np.float32)
# yapf: enable
x1, y1 = bboxes[:, 0:1], bboxes[:, 1:2]
x2, y2 = bboxes[:, 2:3], bboxes[:, 3:4]
w, h = np.maximum(x2 - x1 + 1, 1), np.maximum(y2 - y1 + 1, 1)
dx = (x1.T - x1) / self.norm
dy = (y1.T - y1) / self.norm
xhh, xwh = h.T / h, w.T / h
whs = w / h + np.zeros_like(xhh)
relation = np.stack([dx, dy, whs, xhh, xwh], -1).astype(np.float32)
return relation, bboxes
|