File size: 4,381 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from functools import partial

import mmcv
import numpy as np

from mmocr.utils import bezier_to_polygon, sort_points

# The default dictionary used by CurvedSynthText
dict95 = [
    ' ', '!', '"', '#', '$', '%', '&', '\'', '(', ')', '*', '+', ',', '-', '.',
    '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=',
    '>', '?', '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L',
    'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '[',
    '\\', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
    'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y',
    'z', '{', '|', '}', '~'
]
UNK = len(dict95)
EOS = UNK + 1


def digit2text(rec):
    res = []
    for d in rec:
        assert d <= EOS
        if d == EOS:
            break
        if d == UNK:
            print('Warning: Has a UNK character')
            res.append('口')  # Or any special character not in the target dict
        res.append(dict95[d])
    return ''.join(res)


def modify_annotation(ann, num_sample, start_img_id=0, start_ann_id=0):
    ann['text'] = digit2text(ann.pop('rec'))
    # Get hide egmentation points
    polygon_pts = bezier_to_polygon(ann['bezier_pts'], num_sample=num_sample)
    ann['segmentation'] = np.asarray(sort_points(polygon_pts)).reshape(
        1, -1).tolist()
    ann['image_id'] += start_img_id
    ann['id'] += start_ann_id
    return ann


def modify_image_info(image_info, path_prefix, start_img_id=0):
    image_info['file_name'] = osp.join(path_prefix, image_info['file_name'])
    image_info['id'] += start_img_id
    return image_info


def parse_args():
    parser = argparse.ArgumentParser(
        description='Convert CurvedSynText150k to COCO format')
    parser.add_argument('root_path', help='CurvedSynText150k  root path')
    parser.add_argument('-o', '--out-dir', help='Output path')
    parser.add_argument(
        '-n',
        '--num-sample',
        type=int,
        default=4,
        help='Number of sample points at each Bezier curve.')
    parser.add_argument(
        '--nproc', default=1, type=int, help='Number of processes')
    args = parser.parse_args()
    return args


def convert_annotations(data,
                        path_prefix,
                        num_sample,
                        nproc,
                        start_img_id=0,
                        start_ann_id=0):
    modify_image_info_with_params = partial(
        modify_image_info, path_prefix=path_prefix, start_img_id=start_img_id)
    modify_annotation_with_params = partial(
        modify_annotation,
        num_sample=num_sample,
        start_img_id=start_img_id,
        start_ann_id=start_ann_id)
    if nproc > 1:
        data['annotations'] = mmcv.track_parallel_progress(
            modify_annotation_with_params, data['annotations'], nproc=nproc)
        data['images'] = mmcv.track_parallel_progress(
            modify_image_info_with_params, data['images'], nproc=nproc)
    else:
        data['annotations'] = mmcv.track_progress(
            modify_annotation_with_params, data['annotations'])
        data['images'] = mmcv.track_progress(
            modify_image_info_with_params,
            data['images'],
        )
    data['categories'] = [{'id': 1, 'name': 'text'}]
    return data


def main():
    args = parse_args()
    root_path = args.root_path
    out_dir = args.out_dir if args.out_dir else root_path
    mmcv.mkdir_or_exist(out_dir)

    anns = mmcv.load(osp.join(root_path, 'train1.json'))
    data1 = convert_annotations(anns, 'syntext_word_eng', args.num_sample,
                                args.nproc)

    # Get the maximum image id from data1
    start_img_id = max(data1['images'], key=lambda x: x['id'])['id'] + 1
    start_ann_id = max(data1['annotations'], key=lambda x: x['id'])['id'] + 1
    anns = mmcv.load(osp.join(root_path, 'train2.json'))
    data2 = convert_annotations(
        anns,
        'emcs_imgs',
        args.num_sample,
        args.nproc,
        start_img_id=start_img_id,
        start_ann_id=start_ann_id)

    data1['images'] += data2['images']
    data1['annotations'] += data2['annotations']
    mmcv.dump(data1, osp.join(out_dir, 'instances_training.json'))


if __name__ == '__main__':
    main()