File size: 12,546 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import unittest.mock as mock

import numpy as np
import pytest
import torchvision.transforms as TF
from mmdet.core import BitmapMasks, PolygonMasks
from PIL import Image

import mmocr.datasets.pipelines.transforms as transforms


@mock.patch('%s.transforms.np.random.random_sample' % __name__)
@mock.patch('%s.transforms.np.random.randint' % __name__)
def test_random_crop_instances(mock_randint, mock_sample):

    img_gt = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 1, 1],
                       [0, 0, 1, 1, 1], [0, 0, 1, 1, 1]])
    # test target is bigger than img size in sample_offset
    mock_sample.side_effect = [1]
    rci = transforms.RandomCropInstances(6, instance_key='gt_kernels')
    (i, j) = rci.sample_offset(img_gt, (5, 5))
    assert i == 0
    assert j == 0

    # test the second branch in sample_offset

    rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
    mock_sample.side_effect = [1]
    mock_randint.side_effect = [1, 2]
    (i, j) = rci.sample_offset(img_gt, (5, 5))
    assert i == 1
    assert j == 2

    mock_sample.side_effect = [1]
    mock_randint.side_effect = [1, 2]
    rci = transforms.RandomCropInstances(5, instance_key='gt_kernels')
    (i, j) = rci.sample_offset(img_gt, (5, 5))
    assert i == 0
    assert j == 0

    # test the first bracnh is sample_offset

    rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
    mock_sample.side_effect = [0.1]
    mock_randint.side_effect = [1, 1]
    (i, j) = rci.sample_offset(img_gt, (5, 5))
    assert i == 1
    assert j == 1

    # test crop_img(img, offset, target_size)

    img = img_gt
    offset = [0, 0]
    target = [6, 6]
    crop = rci.crop_img(img, offset, target)
    assert np.allclose(img, crop[0])
    assert np.allclose(crop[1], [0, 0, 5, 5])

    target = [3, 2]
    crop = rci.crop_img(img, offset, target)
    assert np.allclose(np.array([[0, 0], [0, 0], [0, 0]]), crop[0])
    assert np.allclose(crop[1], [0, 0, 2, 3])

    # test crop_bboxes
    canvas_box = np.array([2, 3, 5, 5])
    bboxes = np.array([[2, 3, 4, 4], [0, 0, 1, 1], [1, 2, 4, 4],
                       [0, 0, 10, 10]])
    kept_bboxes, kept_idx = rci.crop_bboxes(bboxes, canvas_box)
    assert np.allclose(kept_bboxes,
                       np.array([[0, 0, 2, 1], [0, 0, 2, 1], [0, 0, 3, 2]]))
    assert kept_idx == [0, 2, 3]

    bboxes = np.array([[10, 10, 11, 11], [0, 0, 1, 1]])
    kept_bboxes, kept_idx = rci.crop_bboxes(bboxes, canvas_box)
    assert kept_bboxes.size == 0
    assert kept_bboxes.shape == (0, 4)
    assert len(kept_idx) == 0

    # test __call__
    rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
    results = {}
    gt_kernels = [img_gt, img_gt.copy()]
    results['gt_kernels'] = BitmapMasks(gt_kernels, 5, 5)
    results['img'] = img_gt.copy()
    results['mask_fields'] = ['gt_kernels']
    mock_sample.side_effect = [0.1]
    mock_randint.side_effect = [1, 1]
    output = rci(results)
    target = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]])
    assert output['img_shape'] == (3, 3)

    assert np.allclose(output['img'], target)

    assert np.allclose(output['gt_kernels'].masks[0], target)
    assert np.allclose(output['gt_kernels'].masks[1], target)


@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_scale_aspect_jitter(mock_random):
    img_scale = [(3000, 1000)]  # unused
    ratio_range = (0.5, 1.5)
    aspect_ratio_range = (1, 1)
    multiscale_mode = 'value'
    long_size_bound = 2000
    short_size_bound = 640
    resize_type = 'long_short_bound'
    keep_ratio = False
    jitter = transforms.ScaleAspectJitter(
        img_scale=img_scale,
        ratio_range=ratio_range,
        aspect_ratio_range=aspect_ratio_range,
        multiscale_mode=multiscale_mode,
        long_size_bound=long_size_bound,
        short_size_bound=short_size_bound,
        resize_type=resize_type,
        keep_ratio=keep_ratio)
    mock_random.side_effect = [0.5]

    # test sample_from_range

    result = jitter.sample_from_range([100, 200])
    assert result == 150

    # test _random_scale
    results = {}
    results['img'] = np.zeros((4000, 1000))
    mock_random.side_effect = [0.5, 1]
    jitter._random_scale(results)
    # scale1 0.5, scale2=1 scale =0.5  650/1000, w, h
    # print(results['scale'])
    assert results['scale'] == (650, 2600)


@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_random_rotate(mock_random):

    mock_random.side_effect = [0.5, 0]
    results = {}
    img = np.random.rand(5, 5)
    results['img'] = img.copy()
    results['mask_fields'] = ['masks']
    gt_kernels = [results['img'].copy()]
    results['masks'] = BitmapMasks(gt_kernels, 5, 5)

    rotater = transforms.RandomRotateTextDet()

    results = rotater(results)
    assert np.allclose(results['img'], img)
    assert np.allclose(results['masks'].masks, img)


def test_color_jitter():
    img = np.ones((64, 256, 3), dtype=np.uint8)
    results = {'img': img}

    pt_official_color_jitter = TF.ColorJitter()
    output1 = pt_official_color_jitter(img)

    color_jitter = transforms.ColorJitter()
    output2 = color_jitter(results)

    assert np.allclose(output1, output2['img'])


def test_affine_jitter():
    img = np.ones((64, 256, 3), dtype=np.uint8)
    results = {'img': img}

    pt_official_affine_jitter = TF.RandomAffine(degrees=0)
    output1 = pt_official_affine_jitter(Image.fromarray(img))

    affine_jitter = transforms.AffineJitter(
        degrees=0,
        translate=None,
        scale=None,
        shear=None,
        resample=False,
        fillcolor=0)
    output2 = affine_jitter(results)

    assert np.allclose(np.array(output1), output2['img'])


def test_random_scale():
    h, w, c = 100, 100, 3
    img = np.ones((h, w, c), dtype=np.uint8)
    results = {'img': img, 'img_shape': (h, w, c)}

    polygon = np.array([0., 0., 0., 10., 10., 10., 10., 0.])

    results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2]))
    results['mask_fields'] = ['gt_masks']

    size = 100
    scale = (2., 2.)
    random_scaler = transforms.RandomScaling(size=size, scale=scale)

    results = random_scaler(results)

    out_img = results['img']
    out_poly = results['gt_masks'].masks[0][0]
    gt_poly = polygon * 2

    assert np.allclose(out_img.shape, (2 * h, 2 * w, c))
    assert np.allclose(out_poly, gt_poly)


@mock.patch('%s.transforms.np.random.randint' % __name__)
def test_random_crop_flip(mock_randint):
    img = np.ones((10, 10, 3), dtype=np.uint8)
    img[0, 0, :] = 0
    results = {'img': img, 'img_shape': img.shape}

    polygon = np.array([0., 0., 0., 10., 10., 10., 10., 0.])

    results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2]))
    results['gt_masks_ignore'] = PolygonMasks([], *(img.shape[:2]))
    results['mask_fields'] = ['gt_masks', 'gt_masks_ignore']

    crop_ratio = 1.1
    iter_num = 3
    random_crop_fliper = transforms.RandomCropFlip(
        crop_ratio=crop_ratio, iter_num=iter_num)

    # test crop_target
    pad_ratio = 0.1
    h, w = img.shape[:2]
    pad_h = int(h * pad_ratio)
    pad_w = int(w * pad_ratio)
    all_polys = results['gt_masks'].masks
    h_axis, w_axis = random_crop_fliper.generate_crop_target(
        img, all_polys, pad_h, pad_w)

    assert np.allclose(h_axis, (0, 11))
    assert np.allclose(w_axis, (0, 11))

    # test __call__
    polygon = np.array([1., 1., 1., 9., 9., 9., 9., 1.])
    results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2]))
    results['gt_masks_ignore'] = PolygonMasks([[polygon]], *(img.shape[:2]))

    mock_randint.side_effect = [0, 1, 2]
    results = random_crop_fliper(results)

    out_img = results['img']
    out_poly = results['gt_masks'].masks[0][0]
    gt_img = img
    gt_poly = polygon

    assert np.allclose(out_img, gt_img)
    assert np.allclose(out_poly, gt_poly)


@mock.patch('%s.transforms.np.random.random_sample' % __name__)
@mock.patch('%s.transforms.np.random.randint' % __name__)
def test_random_crop_poly_instances(mock_randint, mock_sample):
    results = {}
    img = np.zeros((30, 30, 3))
    poly_masks = PolygonMasks([[
        np.array([5., 5., 25., 5., 25., 10., 5., 10.])
    ], [np.array([5., 20., 25., 20., 25., 25., 5., 25.])]], 30, 30)
    results['img'] = img
    results['gt_masks'] = poly_masks
    results['gt_masks_ignore'] = PolygonMasks([], 30, 30)
    results['mask_fields'] = ['gt_masks', 'gt_masks_ignore']
    results['gt_labels'] = [1, 1]
    rcpi = transforms.RandomCropPolyInstances(
        instance_key='gt_masks', crop_ratio=1.0, min_side_ratio=0.3)

    # test sample_crop_box(img_size, results)
    mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 0, 0, 15]
    crop_box = rcpi.sample_crop_box((30, 30), results)
    assert np.allclose(np.array(crop_box), np.array([0, 0, 30, 15]))

    # test __call__
    mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 15, 0, 30]
    mock_sample.side_effect = [0.1]
    output = rcpi(results)
    target = np.array([5., 5., 25., 5., 25., 10., 5., 10.])
    assert len(output['gt_masks']) == 1
    assert len(output['gt_masks_ignore']) == 0
    assert np.allclose(output['gt_masks'].masks[0][0], target)
    assert output['img'].shape == (15, 30, 3)

    # test __call__ with blank instace_key masks
    mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 15, 0, 30]
    mock_sample.side_effect = [0.1]
    rcpi = transforms.RandomCropPolyInstances(
        instance_key='gt_masks_ignore', crop_ratio=1.0, min_side_ratio=0.3)
    results['img'] = img
    results['gt_masks'] = poly_masks
    output = rcpi(results)
    assert len(output['gt_masks']) == 2
    assert np.allclose(output['gt_masks'].masks[0][0], poly_masks.masks[0][0])
    assert np.allclose(output['gt_masks'].masks[1][0], poly_masks.masks[1][0])
    assert output['img'].shape == (30, 30, 3)


@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_random_rotate_poly_instances(mock_sample):
    results = {}
    img = np.zeros((30, 30, 3))
    poly_masks = PolygonMasks(
        [[np.array([10., 10., 20., 10., 20., 20., 10., 20.])]], 30, 30)
    results['img'] = img
    results['gt_masks'] = poly_masks
    results['mask_fields'] = ['gt_masks']
    rrpi = transforms.RandomRotatePolyInstances(rotate_ratio=1.0, max_angle=90)

    mock_sample.side_effect = [0., 1.]
    output = rrpi(results)
    assert np.allclose(output['gt_masks'].masks[0][0],
                       np.array([10., 20., 10., 10., 20., 10., 20., 20.]))
    assert output['img'].shape == (30, 30, 3)


@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_square_resize_pad(mock_sample):
    results = {}
    img = np.zeros((15, 30, 3))
    polygon = np.array([10., 5., 20., 5., 20., 10., 10., 10.])
    poly_masks = PolygonMasks([[polygon]], 15, 30)
    results['img'] = img
    results['gt_masks'] = poly_masks
    results['mask_fields'] = ['gt_masks']
    srp = transforms.SquareResizePad(target_size=40, pad_ratio=0.5)

    # test resize with padding
    mock_sample.side_effect = [0.]
    output = srp(results)
    target = 4. / 3 * polygon
    target[1::2] += 10.
    assert np.allclose(output['gt_masks'].masks[0][0], target)
    assert output['img'].shape == (40, 40, 3)

    # test resize to square without padding
    results['img'] = img
    results['gt_masks'] = poly_masks
    mock_sample.side_effect = [1.]
    output = srp(results)
    target = polygon.copy()
    target[::2] *= 4. / 3
    target[1::2] *= 8. / 3
    assert np.allclose(output['gt_masks'].masks[0][0], target)
    assert output['img'].shape == (40, 40, 3)


def test_pyramid_rescale():
    img = np.random.randint(0, 256, size=(128, 100, 3), dtype=np.uint8)
    x = {'img': copy.deepcopy(img)}
    f = transforms.PyramidRescale()
    results = f(x)
    assert results['img'].shape == (128, 100, 3)

    # Test invalid inputs
    with pytest.raises(AssertionError):
        transforms.PyramidRescale(base_shape=(128))
    with pytest.raises(AssertionError):
        transforms.PyramidRescale(base_shape=128)
    with pytest.raises(AssertionError):
        transforms.PyramidRescale(factor=[])
    with pytest.raises(AssertionError):
        transforms.PyramidRescale(randomize_factor=[])
    with pytest.raises(AssertionError):
        f({})

    # Test factor = 0
    f_derandomized = transforms.PyramidRescale(
        factor=0, randomize_factor=False)
    results = f_derandomized({'img': copy.deepcopy(img)})
    assert np.all(results['img'] == img)