File size: 18,637 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
import torch
from lanms import merge_quadrangle_n9 as la_nms
from mmcv.ops import RoIAlignRotated

from mmocr.models.textdet.postprocess.utils import fill_hole
from .utils import (euclidean_distance_matrix, feature_embedding,
                    normalize_adjacent_matrix)


class ProposalLocalGraphs:
    """Propose text components and generate local graphs for GCN to classify
    the k-nearest neighbors of a pivot in DRRG: Deep Relational Reasoning Graph
    Network for Arbitrary Shape Text Detection.

    [https://arxiv.org/abs/2003.07493]. This code was partially adapted from
    https://github.com/GXYM/DRRG licensed under the MIT license.

    Args:
        k_at_hops (tuple(int)): The number of i-hop neighbors, i = 1, 2.
        num_adjacent_linkages (int): The number of linkages when constructing
            adjacent matrix.
        node_geo_feat_len (int): The length of embedded geometric feature
            vector of a text component.
        pooling_scale (float): The spatial scale of rotated RoI-Align.
        pooling_output_size (tuple(int)): The output size of rotated RoI-Align.
        nms_thr (float): The locality-aware NMS threshold for text components.
        min_width (float): The minimum width of text components.
        max_width (float): The maximum width of text components.
        comp_shrink_ratio (float): The shrink ratio of text components.
        comp_w_h_ratio (float): The width to height ratio of text components.
        comp_score_thr (float): The score threshold of text component.
        text_region_thr (float): The threshold for text region probability map.
        center_region_thr (float): The threshold for text center region
            probability map.
        center_region_area_thr (int): The threshold for filtering small-sized
            text center region.
    """

    def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len,
                 pooling_scale, pooling_output_size, nms_thr, min_width,
                 max_width, comp_shrink_ratio, comp_w_h_ratio, comp_score_thr,
                 text_region_thr, center_region_thr, center_region_area_thr):

        assert len(k_at_hops) == 2
        assert isinstance(k_at_hops, tuple)
        assert isinstance(num_adjacent_linkages, int)
        assert isinstance(node_geo_feat_len, int)
        assert isinstance(pooling_scale, float)
        assert isinstance(pooling_output_size, tuple)
        assert isinstance(nms_thr, float)
        assert isinstance(min_width, float)
        assert isinstance(max_width, float)
        assert isinstance(comp_shrink_ratio, float)
        assert isinstance(comp_w_h_ratio, float)
        assert isinstance(comp_score_thr, float)
        assert isinstance(text_region_thr, float)
        assert isinstance(center_region_thr, float)
        assert isinstance(center_region_area_thr, int)

        self.k_at_hops = k_at_hops
        self.active_connection = num_adjacent_linkages
        self.local_graph_depth = len(self.k_at_hops)
        self.node_geo_feat_dim = node_geo_feat_len
        self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale)
        self.nms_thr = nms_thr
        self.min_width = min_width
        self.max_width = max_width
        self.comp_shrink_ratio = comp_shrink_ratio
        self.comp_w_h_ratio = comp_w_h_ratio
        self.comp_score_thr = comp_score_thr
        self.text_region_thr = text_region_thr
        self.center_region_thr = center_region_thr
        self.center_region_area_thr = center_region_area_thr

    def propose_comps(self, score_map, top_height_map, bot_height_map, sin_map,
                      cos_map, comp_score_thr, min_width, max_width,
                      comp_shrink_ratio, comp_w_h_ratio):
        """Propose text components.

        Args:
            score_map (ndarray): The score map for NMS.
            top_height_map (ndarray): The predicted text height map from each
                pixel in text center region to top sideline.
            bot_height_map (ndarray): The predicted text height map from each
                pixel in text center region to bottom sideline.
            sin_map (ndarray): The predicted sin(theta) map.
            cos_map (ndarray): The predicted cos(theta) map.
            comp_score_thr (float): The score threshold of text component.
            min_width (float): The minimum width of text components.
            max_width (float): The maximum width of text components.
            comp_shrink_ratio (float): The shrink ratio of text components.
            comp_w_h_ratio (float): The width to height ratio of text
                components.

        Returns:
            text_comps (ndarray): The text components.
        """

        comp_centers = np.argwhere(score_map > comp_score_thr)
        comp_centers = comp_centers[np.argsort(comp_centers[:, 0])]
        y = comp_centers[:, 0]
        x = comp_centers[:, 1]

        top_height = top_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio
        bot_height = bot_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio
        sin = sin_map[y, x].reshape((-1, 1))
        cos = cos_map[y, x].reshape((-1, 1))

        top_mid_pts = comp_centers + np.hstack(
            [top_height * sin, top_height * cos])
        bot_mid_pts = comp_centers - np.hstack(
            [bot_height * sin, bot_height * cos])

        width = (top_height + bot_height) * comp_w_h_ratio
        width = np.clip(width, min_width, max_width)
        r = width / 2

        tl = top_mid_pts[:, ::-1] - np.hstack([-r * sin, r * cos])
        tr = top_mid_pts[:, ::-1] + np.hstack([-r * sin, r * cos])
        br = bot_mid_pts[:, ::-1] + np.hstack([-r * sin, r * cos])
        bl = bot_mid_pts[:, ::-1] - np.hstack([-r * sin, r * cos])
        text_comps = np.hstack([tl, tr, br, bl]).astype(np.float32)

        score = score_map[y, x].reshape((-1, 1))
        text_comps = np.hstack([text_comps, score])

        return text_comps

    def propose_comps_and_attribs(self, text_region_map, center_region_map,
                                  top_height_map, bot_height_map, sin_map,
                                  cos_map):
        """Generate text components and attributes.

        Args:
            text_region_map (ndarray): The predicted text region probability
                map.
            center_region_map (ndarray): The predicted text center region
                probability map.
            top_height_map (ndarray): The predicted text height map from each
                pixel in text center region to top sideline.
            bot_height_map (ndarray): The predicted text height map from each
                pixel in text center region to bottom sideline.
            sin_map (ndarray): The predicted sin(theta) map.
            cos_map (ndarray): The predicted cos(theta) map.

        Returns:
            comp_attribs (ndarray): The text component attributes.
            text_comps (ndarray): The text components.
        """

        assert (text_region_map.shape == center_region_map.shape ==
                top_height_map.shape == bot_height_map.shape == sin_map.shape
                == cos_map.shape)
        text_mask = text_region_map > self.text_region_thr
        center_region_mask = (center_region_map >
                              self.center_region_thr) * text_mask

        scale = np.sqrt(1.0 / (sin_map**2 + cos_map**2 + 1e-8))
        sin_map, cos_map = sin_map * scale, cos_map * scale

        center_region_mask = fill_hole(center_region_mask)
        center_region_contours, _ = cv2.findContours(
            center_region_mask.astype(np.uint8), cv2.RETR_TREE,
            cv2.CHAIN_APPROX_SIMPLE)

        mask_sz = center_region_map.shape
        comp_list = []
        for contour in center_region_contours:
            current_center_mask = np.zeros(mask_sz)
            cv2.drawContours(current_center_mask, [contour], -1, 1, -1)
            if current_center_mask.sum() <= self.center_region_area_thr:
                continue
            score_map = text_region_map * current_center_mask

            text_comps = self.propose_comps(score_map, top_height_map,
                                            bot_height_map, sin_map, cos_map,
                                            self.comp_score_thr,
                                            self.min_width, self.max_width,
                                            self.comp_shrink_ratio,
                                            self.comp_w_h_ratio)

            text_comps = la_nms(text_comps, self.nms_thr)
            text_comp_mask = np.zeros(mask_sz)
            text_comp_boxes = text_comps[:, :8].reshape(
                (-1, 4, 2)).astype(np.int32)

            cv2.drawContours(text_comp_mask, text_comp_boxes, -1, 1, -1)
            if (text_comp_mask * text_mask).sum() < text_comp_mask.sum() * 0.5:
                continue
            if text_comps.shape[-1] > 0:
                comp_list.append(text_comps)

        if len(comp_list) <= 0:
            return None, None

        text_comps = np.vstack(comp_list)
        text_comp_boxes = text_comps[:, :8].reshape((-1, 4, 2))
        centers = np.mean(text_comp_boxes, axis=1).astype(np.int32)
        x = centers[:, 0]
        y = centers[:, 1]

        scores = []
        for text_comp_box in text_comp_boxes:
            text_comp_box[:, 0] = np.clip(text_comp_box[:, 0], 0,
                                          mask_sz[1] - 1)
            text_comp_box[:, 1] = np.clip(text_comp_box[:, 1], 0,
                                          mask_sz[0] - 1)
            min_coord = np.min(text_comp_box, axis=0).astype(np.int32)
            max_coord = np.max(text_comp_box, axis=0).astype(np.int32)
            text_comp_box = text_comp_box - min_coord
            box_sz = (max_coord - min_coord + 1)
            temp_comp_mask = np.zeros((box_sz[1], box_sz[0]), dtype=np.uint8)
            cv2.fillPoly(temp_comp_mask, [text_comp_box.astype(np.int32)], 1)
            temp_region_patch = text_region_map[min_coord[1]:(max_coord[1] +
                                                              1),
                                                min_coord[0]:(max_coord[0] +
                                                              1)]
            score = cv2.mean(temp_region_patch, temp_comp_mask)[0]
            scores.append(score)
        scores = np.array(scores).reshape((-1, 1))
        text_comps = np.hstack([text_comps[:, :-1], scores])

        h = top_height_map[y, x].reshape(
            (-1, 1)) + bot_height_map[y, x].reshape((-1, 1))
        w = np.clip(h * self.comp_w_h_ratio, self.min_width, self.max_width)
        sin = sin_map[y, x].reshape((-1, 1))
        cos = cos_map[y, x].reshape((-1, 1))

        x = x.reshape((-1, 1))
        y = y.reshape((-1, 1))
        comp_attribs = np.hstack([x, y, h, w, cos, sin])

        return comp_attribs, text_comps

    def generate_local_graphs(self, sorted_dist_inds, node_feats):
        """Generate local graphs and graph convolution network input data.

        Args:
            sorted_dist_inds (ndarray): The node indices sorted according to
                the Euclidean distance.
            node_feats (tensor): The features of nodes in graph.

        Returns:
            local_graphs_node_feats (tensor): The features of nodes in local
                graphs.
            adjacent_matrices (tensor): The adjacent matrices.
            pivots_knn_inds (tensor): The k-nearest neighbor indices in
                local graphs.
            pivots_local_graphs (tensor): The indices of nodes in local
                graphs.
        """

        assert sorted_dist_inds.ndim == 2
        assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] ==
                node_feats.shape[0])

        knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1]
        pivot_local_graphs = []
        pivot_knns = []
        device = node_feats.device

        for pivot_ind, knn in enumerate(knn_graph):

            local_graph_neighbors = set(knn)

            for neighbor_ind in knn:
                local_graph_neighbors.update(
                    set(sorted_dist_inds[neighbor_ind,
                                         1:self.k_at_hops[1] + 1]))

            local_graph_neighbors.discard(pivot_ind)
            pivot_local_graph = list(local_graph_neighbors)
            pivot_local_graph.insert(0, pivot_ind)
            pivot_knn = [pivot_ind] + list(knn)

            pivot_local_graphs.append(pivot_local_graph)
            pivot_knns.append(pivot_knn)

        num_max_nodes = max([
            len(pivot_local_graph) for pivot_local_graph in pivot_local_graphs
        ])

        local_graphs_node_feat = []
        adjacent_matrices = []
        pivots_knn_inds = []
        pivots_local_graphs = []

        for graph_ind, pivot_knn in enumerate(pivot_knns):
            pivot_local_graph = pivot_local_graphs[graph_ind]
            num_nodes = len(pivot_local_graph)
            pivot_ind = pivot_local_graph[0]
            node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)}

            knn_inds = torch.tensor([node2ind_map[i]
                                     for i in pivot_knn[1:]]).long().to(device)
            pivot_feats = node_feats[pivot_ind]
            normalized_feats = node_feats[pivot_local_graph] - pivot_feats

            adjacent_matrix = np.zeros((num_nodes, num_nodes))
            for node in pivot_local_graph:
                neighbors = sorted_dist_inds[node,
                                             1:self.active_connection + 1]
                for neighbor in neighbors:
                    if neighbor in pivot_local_graph:
                        adjacent_matrix[node2ind_map[node],
                                        node2ind_map[neighbor]] = 1
                        adjacent_matrix[node2ind_map[neighbor],
                                        node2ind_map[node]] = 1

            adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix)
            pad_adjacent_matrix = torch.zeros((num_max_nodes, num_max_nodes),
                                              dtype=torch.float,
                                              device=device)
            pad_adjacent_matrix[:num_nodes, :num_nodes] = torch.from_numpy(
                adjacent_matrix)

            pad_normalized_feats = torch.cat([
                normalized_feats,
                torch.zeros(
                    (num_max_nodes - num_nodes, normalized_feats.shape[1]),
                    dtype=torch.float,
                    device=device)
            ],
                                             dim=0)

            local_graph_nodes = torch.tensor(pivot_local_graph)
            local_graph_nodes = torch.cat([
                local_graph_nodes,
                torch.zeros(num_max_nodes - num_nodes, dtype=torch.long)
            ],
                                          dim=-1)

            local_graphs_node_feat.append(pad_normalized_feats)
            adjacent_matrices.append(pad_adjacent_matrix)
            pivots_knn_inds.append(knn_inds)
            pivots_local_graphs.append(local_graph_nodes)

        local_graphs_node_feat = torch.stack(local_graphs_node_feat, 0)
        adjacent_matrices = torch.stack(adjacent_matrices, 0)
        pivots_knn_inds = torch.stack(pivots_knn_inds, 0)
        pivots_local_graphs = torch.stack(pivots_local_graphs, 0)

        return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
                pivots_local_graphs)

    def __call__(self, preds, feat_maps):
        """Generate local graphs and graph convolutional network input data.

        Args:
            preds (tensor): The predicted maps.
            feat_maps (tensor): The feature maps to extract content feature of
                text components.

        Returns:
            none_flag (bool): The flag showing whether the number of proposed
                text components is 0.
            local_graphs_node_feats (tensor): The features of nodes in local
                graphs.
            adjacent_matrices (tensor): The adjacent matrices.
            pivots_knn_inds (tensor): The k-nearest neighbor indices in
                local graphs.
            pivots_local_graphs (tensor): The indices of nodes in local
                graphs.
            text_comps (ndarray): The predicted text components.
        """

        if preds.ndim == 4:
            assert preds.shape[0] == 1
            preds = torch.squeeze(preds)
        pred_text_region = torch.sigmoid(preds[0]).data.cpu().numpy()
        pred_center_region = torch.sigmoid(preds[1]).data.cpu().numpy()
        pred_sin_map = preds[2].data.cpu().numpy()
        pred_cos_map = preds[3].data.cpu().numpy()
        pred_top_height_map = preds[4].data.cpu().numpy()
        pred_bot_height_map = preds[5].data.cpu().numpy()
        device = preds.device

        comp_attribs, text_comps = self.propose_comps_and_attribs(
            pred_text_region, pred_center_region, pred_top_height_map,
            pred_bot_height_map, pred_sin_map, pred_cos_map)

        if comp_attribs is None or len(comp_attribs) < 2:
            none_flag = True
            return none_flag, (0, 0, 0, 0, 0)

        comp_centers = comp_attribs[:, 0:2]
        distance_matrix = euclidean_distance_matrix(comp_centers, comp_centers)

        geo_feats = feature_embedding(comp_attribs, self.node_geo_feat_dim)
        geo_feats = torch.from_numpy(geo_feats).to(preds.device)

        batch_id = np.zeros((comp_attribs.shape[0], 1), dtype=np.float32)
        comp_attribs = comp_attribs.astype(np.float32)
        angle = np.arccos(comp_attribs[:, -2]) * np.sign(comp_attribs[:, -1])
        angle = angle.reshape((-1, 1))
        rotated_rois = np.hstack([batch_id, comp_attribs[:, :-2], angle])
        rois = torch.from_numpy(rotated_rois).to(device)

        content_feats = self.pooling(feat_maps, rois)
        content_feats = content_feats.view(content_feats.shape[0],
                                           -1).to(device)
        node_feats = torch.cat([content_feats, geo_feats], dim=-1)

        sorted_dist_inds = np.argsort(distance_matrix, axis=1)
        (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
         pivots_local_graphs) = self.generate_local_graphs(
             sorted_dist_inds, node_feats)

        none_flag = False
        return none_flag, (local_graphs_node_feat, adjacent_matrices,
                           pivots_knn_inds, pivots_local_graphs, text_comps)