Spaces:
Runtime error
Runtime error
File size: 10,163 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import warnings
from typing import Iterable
import cv2
import mmcv
import numpy as np
import torch
from mmcv.parallel import collate
from mmcv.tensorrt import is_tensorrt_plugin_loaded, onnx2trt, save_trt_engine
from mmdet.datasets import replace_ImageToTensor
from mmdet.datasets.pipelines import Compose
from mmocr.core.deployment import (ONNXRuntimeDetector, ONNXRuntimeRecognizer,
TensorRTDetector, TensorRTRecognizer)
from mmocr.datasets.pipelines.crop import crop_img # noqa: F401
from mmocr.utils import is_2dlist
def get_GiB(x: int):
"""return x GiB."""
return x * (1 << 30)
def _prepare_input_img(imgs, test_pipeline: Iterable[dict]):
"""Inference image(s) with the detector.
Args:
imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]):
Either image files or loaded images.
test_pipeline (Iterable[dict]): Test pipline of configuration.
Returns:
result (dict): Predicted results.
"""
if isinstance(imgs, (list, tuple)):
if not isinstance(imgs[0], (np.ndarray, str)):
raise AssertionError('imgs must be strings or numpy arrays')
elif isinstance(imgs, (np.ndarray, str)):
imgs = [imgs]
else:
raise AssertionError('imgs must be strings or numpy arrays')
test_pipeline = replace_ImageToTensor(test_pipeline)
test_pipeline = Compose(test_pipeline)
data = []
for img in imgs:
# prepare data
# add information into dict
datum = dict(img_info=dict(filename=img), img_prefix=None)
# build the data pipeline
datum = test_pipeline(datum)
# get tensor from list to stack for batch mode (text detection)
data.append(datum)
if isinstance(data[0]['img'], list) and len(data) > 1:
raise Exception('aug test does not support '
f'inference with batch size '
f'{len(data)}')
data = collate(data, samples_per_gpu=len(imgs))
# process img_metas
if isinstance(data['img_metas'], list):
data['img_metas'] = [
img_metas.data[0] for img_metas in data['img_metas']
]
else:
data['img_metas'] = data['img_metas'].data
if isinstance(data['img'], list):
data['img'] = [img.data for img in data['img']]
if isinstance(data['img'][0], list):
data['img'] = [img[0] for img in data['img']]
else:
data['img'] = data['img'].data
return data
def onnx2tensorrt(onnx_file: str,
model_type: str,
trt_file: str,
config: dict,
input_config: dict,
fp16: bool = False,
verify: bool = False,
show: bool = False,
workspace_size: int = 1,
verbose: bool = False):
import tensorrt as trt
min_shape = input_config['min_shape']
max_shape = input_config['max_shape']
# create trt engine and wrapper
opt_shape_dict = {'input': [min_shape, min_shape, max_shape]}
max_workspace_size = get_GiB(workspace_size)
trt_engine = onnx2trt(
onnx_file,
opt_shape_dict,
log_level=trt.Logger.VERBOSE if verbose else trt.Logger.ERROR,
fp16_mode=fp16,
max_workspace_size=max_workspace_size)
save_dir, _ = osp.split(trt_file)
if save_dir:
os.makedirs(save_dir, exist_ok=True)
save_trt_engine(trt_engine, trt_file)
print(f'Successfully created TensorRT engine: {trt_file}')
if verify:
mm_inputs = _prepare_input_img(input_config['input_path'],
config.data.test.pipeline)
imgs = mm_inputs.pop('img')
img_metas = mm_inputs.pop('img_metas')
if isinstance(imgs, list):
imgs = imgs[0]
img_list = [img[None, :] for img in imgs]
# Get results from ONNXRuntime
if model_type == 'det':
onnx_model = ONNXRuntimeDetector(onnx_file, config, 0)
else:
onnx_model = ONNXRuntimeRecognizer(onnx_file, config, 0)
onnx_out = onnx_model.simple_test(
img_list[0], img_metas[0], rescale=True)
# Get results from TensorRT
if model_type == 'det':
trt_model = TensorRTDetector(trt_file, config, 0)
else:
trt_model = TensorRTRecognizer(trt_file, config, 0)
img_list[0] = img_list[0].to(torch.device('cuda:0'))
trt_out = trt_model.simple_test(
img_list[0], img_metas[0], rescale=True)
# compare results
same_diff = 'same'
if model_type == 'recog':
for onnx_result, trt_result in zip(onnx_out, trt_out):
if onnx_result['text'] != trt_result['text'] or \
not np.allclose(
np.array(onnx_result['score']),
np.array(trt_result['score']),
rtol=1e-4,
atol=1e-4):
same_diff = 'different'
break
else:
for onnx_result, trt_result in zip(onnx_out[0]['boundary_result'],
trt_out[0]['boundary_result']):
if not np.allclose(
np.array(onnx_result),
np.array(trt_result),
rtol=1e-4,
atol=1e-4):
same_diff = 'different'
break
print('The outputs are {} between TensorRT and ONNX'.format(same_diff))
if show:
onnx_img = onnx_model.show_result(
input_config['input_path'],
onnx_out[0],
out_file='onnx.jpg',
show=False)
trt_img = trt_model.show_result(
input_config['input_path'],
trt_out[0],
out_file='tensorrt.jpg',
show=False)
if onnx_img is None:
onnx_img = cv2.imread(input_config['input_path'])
if trt_img is None:
trt_img = cv2.imread(input_config['input_path'])
cv2.imshow('TensorRT', trt_img)
cv2.imshow('ONNXRuntime', onnx_img)
cv2.waitKey()
return
def parse_args():
parser = argparse.ArgumentParser(
description='Convert MMOCR models from ONNX to TensorRT')
parser.add_argument('model_config', help='Config file of the model')
parser.add_argument(
'model_type',
type=str,
help='Detection or recognition model to deploy.',
choices=['recog', 'det'])
parser.add_argument('image_path', type=str, help='Image for test')
parser.add_argument('onnx_file', help='Path to the input ONNX model')
parser.add_argument(
'--trt-file',
type=str,
help='Path to the output TensorRT engine',
default='tmp.trt')
parser.add_argument(
'--max-shape',
type=int,
nargs=4,
default=[1, 3, 400, 600],
help='Maximum shape of model input.')
parser.add_argument(
'--min-shape',
type=int,
nargs=4,
default=[1, 3, 400, 600],
help='Minimum shape of model input.')
parser.add_argument(
'--workspace-size',
type=int,
default=1,
help='Max workspace size in GiB.')
parser.add_argument('--fp16', action='store_true', help='Enable fp16 mode')
parser.add_argument(
'--verify',
action='store_true',
help='Whether Verify the outputs of ONNXRuntime and TensorRT.',
default=True)
parser.add_argument(
'--show',
action='store_true',
help='Whether visiualize outputs of ONNXRuntime and TensorRT.',
default=True)
parser.add_argument(
'--verbose',
action='store_true',
help='Whether to verbose logging messages while creating \
TensorRT engine.')
args = parser.parse_args()
return args
if __name__ == '__main__':
assert is_tensorrt_plugin_loaded(), 'TensorRT plugin should be compiled.'
args = parse_args()
# Following strings of text style are from colorama package
bright_style, reset_style = '\x1b[1m', '\x1b[0m'
red_text, blue_text = '\x1b[31m', '\x1b[34m'
white_background = '\x1b[107m'
msg = white_background + bright_style + red_text
msg += 'DeprecationWarning: This tool will be deprecated in future. '
msg += blue_text + 'Welcome to use the unified model deployment toolbox '
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
msg += reset_style
warnings.warn(msg)
# check arguments
assert osp.exists(args.model_config), 'Config {} not found.'.format(
args.model_config)
assert osp.exists(args.onnx_file), \
'ONNX model {} not found.'.format(args.onnx_file)
assert args.workspace_size >= 0, 'Workspace size less than 0.'
for max_value, min_value in zip(args.max_shape, args.min_shape):
assert max_value >= min_value, \
'max_shape should be larger than min shape'
input_config = {
'min_shape': args.min_shape,
'max_shape': args.max_shape,
'input_path': args.image_path
}
cfg = mmcv.Config.fromfile(args.model_config)
if cfg.data.test.get('pipeline', None) is None:
if is_2dlist(cfg.data.test.datasets):
cfg.data.test.pipeline = \
cfg.data.test.datasets[0][0].pipeline
else:
cfg.data.test.pipeline = \
cfg.data.test['datasets'][0].pipeline
if is_2dlist(cfg.data.test.pipeline):
cfg.data.test.pipeline = cfg.data.test.pipeline[0]
onnx2tensorrt(
args.onnx_file,
args.model_type,
args.trt_file,
cfg,
input_config,
fp16=args.fp16,
verify=args.verify,
show=args.show,
workspace_size=args.workspace_size,
verbose=args.verbose)
|