File size: 2,219 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright (c) OpenMMLab. All rights reserved.
import os
import platform
import warnings

import cv2
import torch.multiprocessing as mp


def setup_multi_processes(cfg):
    """Setup multi-processing environment variables."""
    # set multi-process start method as `fork` to speed up the training
    if platform.system() != 'Windows':
        mp_start_method = cfg.get('mp_start_method', 'fork')
        current_method = mp.get_start_method(allow_none=True)
        if current_method is not None and current_method != mp_start_method:
            warnings.warn(
                f'Multi-processing start method `{mp_start_method}` is '
                f'different from the previous setting `{current_method}`.'
                f'It will be force set to `{mp_start_method}`. You can change '
                f'this behavior by changing `mp_start_method` in your config.')
        mp.set_start_method(mp_start_method, force=True)

    # disable opencv multithreading to avoid system being overloaded
    opencv_num_threads = cfg.get('opencv_num_threads', 0)
    cv2.setNumThreads(opencv_num_threads)

    # setup OMP threads
    # This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py  # noqa
    if 'OMP_NUM_THREADS' not in os.environ and cfg.data.workers_per_gpu > 1:
        omp_num_threads = 1
        warnings.warn(
            f'Setting OMP_NUM_THREADS environment variable for each process '
            f'to be {omp_num_threads} in default, to avoid your system being '
            f'overloaded, please further tune the variable for optimal '
            f'performance in your application as needed.')
        os.environ['OMP_NUM_THREADS'] = str(omp_num_threads)

    # setup MKL threads
    if 'MKL_NUM_THREADS' not in os.environ and cfg.data.workers_per_gpu > 1:
        mkl_num_threads = 1
        warnings.warn(
            f'Setting MKL_NUM_THREADS environment variable for each process '
            f'to be {mkl_num_threads} in default, to avoid your system being '
            f'overloaded, please further tune the variable for optimal '
            f'performance in your application as needed.')
        os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads)