File size: 8,434 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from abc import ABCMeta, abstractmethod
from collections import OrderedDict

import mmcv
import torch
import torch.distributed as dist
from mmcv.runner import BaseModule, auto_fp16

from mmocr.core import imshow_text_label


class BaseRecognizer(BaseModule, metaclass=ABCMeta):
    """Base class for text recognition."""

    def __init__(self, init_cfg=None):
        super().__init__(init_cfg=init_cfg)
        self.fp16_enabled = False

    @abstractmethod
    def extract_feat(self, imgs):
        """Extract features from images."""
        pass

    @abstractmethod
    def forward_train(self, imgs, img_metas, **kwargs):
        """
        Args:
            img (tensor): tensors with shape (N, C, H, W).
                Typically should be mean centered and std scaled.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details of the values of these keys, see
                :class:`mmdet.datasets.pipelines.Collect`.
            kwargs (keyword arguments): Specific to concrete implementation.
        """
        pass

    @abstractmethod
    def simple_test(self, img, img_metas, **kwargs):
        pass

    @abstractmethod
    def aug_test(self, imgs, img_metas, **kwargs):
        """Test function with test time augmentation.

        Args:
            imgs (list[tensor]): Tensor should have shape NxCxHxW,
                which contains all images in the batch.
            img_metas (list[list[dict]]): The metadata of images.
        """
        pass

    def forward_test(self, imgs, img_metas, **kwargs):
        """
        Args:
            imgs (tensor | list[tensor]): Tensor should have shape NxCxHxW,
                which contains all images in the batch.
            img_metas (list[dict] | list[list[dict]]):
                The outer list indicates images in a batch.
        """
        if isinstance(imgs, list):
            assert len(imgs) > 0
            assert imgs[0].size(0) == 1, ('aug test does not support '
                                          f'inference with batch size '
                                          f'{imgs[0].size(0)}')
            assert len(imgs) == len(img_metas)
            return self.aug_test(imgs, img_metas, **kwargs)

        return self.simple_test(imgs, img_metas, **kwargs)

    @auto_fp16(apply_to=('img', ))
    def forward(self, img, img_metas, return_loss=True, **kwargs):
        """Calls either :func:`forward_train` or :func:`forward_test` depending
        on whether ``return_loss`` is ``True``.

        Note that img and img_meta are single-nested (i.e. tensor and
        list[dict]).
        """

        if return_loss:
            return self.forward_train(img, img_metas, **kwargs)

        if isinstance(img, list):
            for idx, each_img in enumerate(img):
                if each_img.dim() == 3:
                    img[idx] = each_img.unsqueeze(0)
        else:
            if len(img_metas) == 1 and isinstance(img_metas[0], list):
                img_metas = img_metas[0]

        return self.forward_test(img, img_metas, **kwargs)

    def _parse_losses(self, losses):
        """Parse the raw outputs (losses) of the network.

        Args:
            losses (dict): Raw outputs of the network, which usually contain
                losses and other necessary information.

        Returns:
            tuple[tensor, dict]: (loss, log_vars), loss is the loss tensor
                which may be a weighted sum of all losses, log_vars contains
                all the variables to be sent to the logger.
        """
        log_vars = OrderedDict()
        for loss_name, loss_value in losses.items():
            if isinstance(loss_value, torch.Tensor):
                log_vars[loss_name] = loss_value.mean()
            elif isinstance(loss_value, list):
                log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
            else:
                raise TypeError(
                    f'{loss_name} is not a tensor or list of tensors')

        loss = sum(_value for _key, _value in log_vars.items()
                   if 'loss' in _key)

        log_vars['loss'] = loss
        for loss_name, loss_value in log_vars.items():
            # reduce loss when distributed training
            if dist.is_available() and dist.is_initialized():
                loss_value = loss_value.data.clone()
                dist.all_reduce(loss_value.div_(dist.get_world_size()))
            log_vars[loss_name] = loss_value.item()

        return loss, log_vars

    def train_step(self, data, optimizer):
        """The iteration step during training.

        This method defines an iteration step during training, except for the
        back propagation and optimizer update, which are done by an optimizer
        hook. Note that in some complicated cases or models (e.g. GAN),
        the whole process (including the back propagation and optimizer update)
        is also defined by this method.

        Args:
            data (dict): The outputs of dataloader.
            optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of
                runner is passed to ``train_step()``. This argument is unused
                and reserved.

        Returns:
            dict: It should contain at least 3 keys: ``loss``, ``log_vars``,
                ``num_samples``.

                - ``loss`` is a tensor for back propagation, which is a
                weighted sum of multiple losses.
                - ``log_vars`` contains all the variables to be sent to the
                logger.
                - ``num_samples`` indicates the batch size used for
                averaging the logs (Note: for the
                DDP model, num_samples refers to the batch size for each GPU).
        """
        losses = self(**data)
        loss, log_vars = self._parse_losses(losses)

        outputs = dict(
            loss=loss, log_vars=log_vars, num_samples=len(data['img_metas']))

        return outputs

    def val_step(self, data, optimizer):
        """The iteration step during validation.

        This method shares the same signature as :func:`train_step`, but is
        used during val epochs. Note that the evaluation after training epochs
        is not implemented by this method, but by an evaluation hook.
        """
        losses = self(**data)
        loss, log_vars = self._parse_losses(losses)

        outputs = dict(
            loss=loss, log_vars=log_vars, num_samples=len(data['img_metas']))

        return outputs

    def show_result(self,
                    img,
                    result,
                    gt_label='',
                    win_name='',
                    show=False,
                    wait_time=0,
                    out_file=None,
                    **kwargs):
        """Draw `result` on `img`.

        Args:
            img (str or tensor): The image to be displayed.
            result (dict): The results to draw on `img`.
            gt_label (str): Ground truth label of img.
            win_name (str): The window name.
            wait_time (int): Value of waitKey param.
                Default: 0.
            show (bool): Whether to show the image.
                Default: False.
            out_file (str or None): The output filename.
                Default: None.

        Returns:
            img (tensor): Only if not `show` or `out_file`.
        """
        img = mmcv.imread(img)
        img = img.copy()
        pred_label = None
        if 'text' in result.keys():
            pred_label = result['text']

        # if out_file specified, do not show image in window
        if out_file is not None:
            show = False
        # draw text label
        if pred_label is not None:
            img = imshow_text_label(
                img,
                pred_label,
                gt_label,
                show=show,
                win_name=win_name,
                wait_time=wait_time,
                out_file=out_file)

        if not (show or out_file):
            warnings.warn('show==False and out_file is not specified, only '
                          'result image will be returned')
            return img

        return img