Spaces:
Runtime error
Runtime error
File size: 8,434 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from abc import ABCMeta, abstractmethod
from collections import OrderedDict
import mmcv
import torch
import torch.distributed as dist
from mmcv.runner import BaseModule, auto_fp16
from mmocr.core import imshow_text_label
class BaseRecognizer(BaseModule, metaclass=ABCMeta):
"""Base class for text recognition."""
def __init__(self, init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.fp16_enabled = False
@abstractmethod
def extract_feat(self, imgs):
"""Extract features from images."""
pass
@abstractmethod
def forward_train(self, imgs, img_metas, **kwargs):
"""
Args:
img (tensor): tensors with shape (N, C, H, W).
Typically should be mean centered and std scaled.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details of the values of these keys, see
:class:`mmdet.datasets.pipelines.Collect`.
kwargs (keyword arguments): Specific to concrete implementation.
"""
pass
@abstractmethod
def simple_test(self, img, img_metas, **kwargs):
pass
@abstractmethod
def aug_test(self, imgs, img_metas, **kwargs):
"""Test function with test time augmentation.
Args:
imgs (list[tensor]): Tensor should have shape NxCxHxW,
which contains all images in the batch.
img_metas (list[list[dict]]): The metadata of images.
"""
pass
def forward_test(self, imgs, img_metas, **kwargs):
"""
Args:
imgs (tensor | list[tensor]): Tensor should have shape NxCxHxW,
which contains all images in the batch.
img_metas (list[dict] | list[list[dict]]):
The outer list indicates images in a batch.
"""
if isinstance(imgs, list):
assert len(imgs) > 0
assert imgs[0].size(0) == 1, ('aug test does not support '
f'inference with batch size '
f'{imgs[0].size(0)}')
assert len(imgs) == len(img_metas)
return self.aug_test(imgs, img_metas, **kwargs)
return self.simple_test(imgs, img_metas, **kwargs)
@auto_fp16(apply_to=('img', ))
def forward(self, img, img_metas, return_loss=True, **kwargs):
"""Calls either :func:`forward_train` or :func:`forward_test` depending
on whether ``return_loss`` is ``True``.
Note that img and img_meta are single-nested (i.e. tensor and
list[dict]).
"""
if return_loss:
return self.forward_train(img, img_metas, **kwargs)
if isinstance(img, list):
for idx, each_img in enumerate(img):
if each_img.dim() == 3:
img[idx] = each_img.unsqueeze(0)
else:
if len(img_metas) == 1 and isinstance(img_metas[0], list):
img_metas = img_metas[0]
return self.forward_test(img, img_metas, **kwargs)
def _parse_losses(self, losses):
"""Parse the raw outputs (losses) of the network.
Args:
losses (dict): Raw outputs of the network, which usually contain
losses and other necessary information.
Returns:
tuple[tensor, dict]: (loss, log_vars), loss is the loss tensor
which may be a weighted sum of all losses, log_vars contains
all the variables to be sent to the logger.
"""
log_vars = OrderedDict()
for loss_name, loss_value in losses.items():
if isinstance(loss_value, torch.Tensor):
log_vars[loss_name] = loss_value.mean()
elif isinstance(loss_value, list):
log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
else:
raise TypeError(
f'{loss_name} is not a tensor or list of tensors')
loss = sum(_value for _key, _value in log_vars.items()
if 'loss' in _key)
log_vars['loss'] = loss
for loss_name, loss_value in log_vars.items():
# reduce loss when distributed training
if dist.is_available() and dist.is_initialized():
loss_value = loss_value.data.clone()
dist.all_reduce(loss_value.div_(dist.get_world_size()))
log_vars[loss_name] = loss_value.item()
return loss, log_vars
def train_step(self, data, optimizer):
"""The iteration step during training.
This method defines an iteration step during training, except for the
back propagation and optimizer update, which are done by an optimizer
hook. Note that in some complicated cases or models (e.g. GAN),
the whole process (including the back propagation and optimizer update)
is also defined by this method.
Args:
data (dict): The outputs of dataloader.
optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of
runner is passed to ``train_step()``. This argument is unused
and reserved.
Returns:
dict: It should contain at least 3 keys: ``loss``, ``log_vars``,
``num_samples``.
- ``loss`` is a tensor for back propagation, which is a
weighted sum of multiple losses.
- ``log_vars`` contains all the variables to be sent to the
logger.
- ``num_samples`` indicates the batch size used for
averaging the logs (Note: for the
DDP model, num_samples refers to the batch size for each GPU).
"""
losses = self(**data)
loss, log_vars = self._parse_losses(losses)
outputs = dict(
loss=loss, log_vars=log_vars, num_samples=len(data['img_metas']))
return outputs
def val_step(self, data, optimizer):
"""The iteration step during validation.
This method shares the same signature as :func:`train_step`, but is
used during val epochs. Note that the evaluation after training epochs
is not implemented by this method, but by an evaluation hook.
"""
losses = self(**data)
loss, log_vars = self._parse_losses(losses)
outputs = dict(
loss=loss, log_vars=log_vars, num_samples=len(data['img_metas']))
return outputs
def show_result(self,
img,
result,
gt_label='',
win_name='',
show=False,
wait_time=0,
out_file=None,
**kwargs):
"""Draw `result` on `img`.
Args:
img (str or tensor): The image to be displayed.
result (dict): The results to draw on `img`.
gt_label (str): Ground truth label of img.
win_name (str): The window name.
wait_time (int): Value of waitKey param.
Default: 0.
show (bool): Whether to show the image.
Default: False.
out_file (str or None): The output filename.
Default: None.
Returns:
img (tensor): Only if not `show` or `out_file`.
"""
img = mmcv.imread(img)
img = img.copy()
pred_label = None
if 'text' in result.keys():
pred_label = result['text']
# if out_file specified, do not show image in window
if out_file is not None:
show = False
# draw text label
if pred_label is not None:
img = imshow_text_label(
img,
pred_label,
gt_label,
show=show,
win_name=win_name,
wait_time=wait_time,
out_file=out_file)
if not (show or out_file):
warnings.warn('show==False and out_file is not specified, only '
'result image will be returned')
return img
return img
|