File size: 18,713 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# Copyright (c) OpenMMLab. All rights reserved.
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

import mmocr.utils as utils
from mmocr.models.builder import DECODERS
from .base_decoder import BaseDecoder


@DECODERS.register_module()
class ParallelSARDecoder(BaseDecoder):
    """Implementation Parallel Decoder module in `SAR.

    <https://arxiv.org/abs/1811.00751>`_.

    Args:
        num_classes (int): Output class number :math:`C`.
        channels (list[int]): Network layer channels.
        enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
        dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
        dec_do_rnn (float): Dropout of RNN layer in decoder.
        dec_gru (bool): If True, use GRU, else LSTM in decoder.
        d_model (int): Dim of channels from backbone :math:`D_i`.
        d_enc (int): Dim of encoder RNN layer :math:`D_m`.
        d_k (int): Dim of channels of attention module.
        pred_dropout (float): Dropout probability of prediction layer.
        max_seq_len (int): Maximum sequence length for decoding.
        mask (bool): If True, mask padding in feature map.
        start_idx (int): Index of start token.
        padding_idx (int): Index of padding token.
        pred_concat (bool): If True, concat glimpse feature from
            attention with holistic feature and hidden state.
        init_cfg (dict or list[dict], optional): Initialization configs.

    Warning:
        This decoder will not predict the final class which is assumed to be
        `<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>`
        is also ignored by loss as specified in
        :obj:`mmocr.models.textrecog.recognizer.EncodeDecodeRecognizer`.
    """

    def __init__(self,
                 num_classes=37,
                 enc_bi_rnn=False,
                 dec_bi_rnn=False,
                 dec_do_rnn=0.0,
                 dec_gru=False,
                 d_model=512,
                 d_enc=512,
                 d_k=64,
                 pred_dropout=0.0,
                 max_seq_len=40,
                 mask=True,
                 start_idx=0,
                 padding_idx=92,
                 pred_concat=False,
                 init_cfg=None,
                 **kwargs):
        super().__init__(init_cfg=init_cfg)

        self.num_classes = num_classes
        self.enc_bi_rnn = enc_bi_rnn
        self.d_k = d_k
        self.start_idx = start_idx
        self.max_seq_len = max_seq_len
        self.mask = mask
        self.pred_concat = pred_concat

        encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
        decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)
        # 2D attention layer
        self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k)
        self.conv3x3_1 = nn.Conv2d(
            d_model, d_k, kernel_size=3, stride=1, padding=1)
        self.conv1x1_2 = nn.Linear(d_k, 1)

        # Decoder RNN layer
        kwargs = dict(
            input_size=encoder_rnn_out_size,
            hidden_size=encoder_rnn_out_size,
            num_layers=2,
            batch_first=True,
            dropout=dec_do_rnn,
            bidirectional=dec_bi_rnn)
        if dec_gru:
            self.rnn_decoder = nn.GRU(**kwargs)
        else:
            self.rnn_decoder = nn.LSTM(**kwargs)

        # Decoder input embedding
        self.embedding = nn.Embedding(
            self.num_classes, encoder_rnn_out_size, padding_idx=padding_idx)

        # Prediction layer
        self.pred_dropout = nn.Dropout(pred_dropout)
        pred_num_classes = num_classes - 1  # ignore padding_idx in prediction
        if pred_concat:
            fc_in_channel = decoder_rnn_out_size + d_model + \
                            encoder_rnn_out_size
        else:
            fc_in_channel = d_model
        self.prediction = nn.Linear(fc_in_channel, pred_num_classes)

    def _2d_attention(self,
                      decoder_input,
                      feat,
                      holistic_feat,
                      valid_ratios=None):
        y = self.rnn_decoder(decoder_input)[0]
        # y: bsz * (seq_len + 1) * hidden_size

        attn_query = self.conv1x1_1(y)  # bsz * (seq_len + 1) * attn_size
        bsz, seq_len, attn_size = attn_query.size()
        attn_query = attn_query.view(bsz, seq_len, attn_size, 1, 1)

        attn_key = self.conv3x3_1(feat)
        # bsz * attn_size * h * w
        attn_key = attn_key.unsqueeze(1)
        # bsz * 1 * attn_size * h * w

        attn_weight = torch.tanh(torch.add(attn_key, attn_query, alpha=1))
        # bsz * (seq_len + 1) * attn_size * h * w
        attn_weight = attn_weight.permute(0, 1, 3, 4, 2).contiguous()
        # bsz * (seq_len + 1) * h * w * attn_size
        attn_weight = self.conv1x1_2(attn_weight)
        # bsz * (seq_len + 1) * h * w * 1
        bsz, T, h, w, c = attn_weight.size()
        assert c == 1

        if valid_ratios is not None:
            # cal mask of attention weight
            attn_mask = torch.zeros_like(attn_weight)
            for i, valid_ratio in enumerate(valid_ratios):
                valid_width = min(w, math.ceil(w * valid_ratio))
                attn_mask[i, :, :, valid_width:, :] = 1
            attn_weight = attn_weight.masked_fill(attn_mask.bool(),
                                                  float('-inf'))

        attn_weight = attn_weight.view(bsz, T, -1)
        attn_weight = F.softmax(attn_weight, dim=-1)
        attn_weight = attn_weight.view(bsz, T, h, w,
                                       c).permute(0, 1, 4, 2, 3).contiguous()

        attn_feat = torch.sum(
            torch.mul(feat.unsqueeze(1), attn_weight), (3, 4), keepdim=False)
        # bsz * (seq_len + 1) * C

        # linear transformation
        if self.pred_concat:
            hf_c = holistic_feat.size(-1)
            holistic_feat = holistic_feat.expand(bsz, seq_len, hf_c)
            y = self.prediction(torch.cat((y, attn_feat, holistic_feat), 2))
        else:
            y = self.prediction(attn_feat)
        # bsz * (seq_len + 1) * num_classes
        if self.train_mode:
            y = self.pred_dropout(y)

        return y

    def forward_train(self, feat, out_enc, targets_dict, img_metas):
        """
        Args:
            feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
            out_enc (Tensor): Encoder output of shape
                :math:`(N, D_m, H, W)`.
            targets_dict (dict): A dict with the key ``padded_targets``, a
                tensor of shape :math:`(N, T)`. Each element is the index of a
                character.
            img_metas (dict): A dict that contains meta information of input
                images. Preferably with the key ``valid_ratio``.

        Returns:
            Tensor: A raw logit tensor of shape :math:`(N, T, C-1)`.
        """
        if img_metas is not None:
            assert utils.is_type_list(img_metas, dict)
            assert len(img_metas) == feat.size(0)

        valid_ratios = None
        if img_metas is not None:
            valid_ratios = [
                img_meta.get('valid_ratio', 1.0) for img_meta in img_metas
            ] if self.mask else None

        targets = targets_dict['padded_targets'].to(feat.device)
        tgt_embedding = self.embedding(targets)
        # bsz * seq_len * emb_dim
        out_enc = out_enc.unsqueeze(1)
        # bsz * 1 * emb_dim
        in_dec = torch.cat((out_enc, tgt_embedding), dim=1)
        # bsz * (seq_len + 1) * C
        out_dec = self._2d_attention(
            in_dec, feat, out_enc, valid_ratios=valid_ratios)
        # bsz * (seq_len + 1) * num_classes

        return out_dec[:, 1:, :]  # bsz * seq_len * num_classes

    def forward_test(self, feat, out_enc, img_metas):
        """
        Args:
            feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
            out_enc (Tensor): Encoder output of shape
                :math:`(N, D_m, H, W)`.
            img_metas (dict): A dict that contains meta information of input
                images. Preferably with the key ``valid_ratio``.

        Returns:
            Tensor: A raw logit tensor of shape :math:`(N, T, C-1)`.
        """
        if img_metas is not None:
            assert utils.is_type_list(img_metas, dict)
            assert len(img_metas) == feat.size(0)

        valid_ratios = None
        if img_metas is not None:
            valid_ratios = [
                img_meta.get('valid_ratio', 1.0) for img_meta in img_metas
            ] if self.mask else None

        seq_len = self.max_seq_len

        bsz = feat.size(0)
        start_token = torch.full((bsz, ),
                                 self.start_idx,
                                 device=feat.device,
                                 dtype=torch.long)
        # bsz
        start_token = self.embedding(start_token)
        # bsz * emb_dim
        start_token = start_token.unsqueeze(1).expand(-1, seq_len, -1)
        # bsz * seq_len * emb_dim
        out_enc = out_enc.unsqueeze(1)
        # bsz * 1 * emb_dim
        decoder_input = torch.cat((out_enc, start_token), dim=1)
        # bsz * (seq_len + 1) * emb_dim

        outputs = []
        for i in range(1, seq_len + 1):
            decoder_output = self._2d_attention(
                decoder_input, feat, out_enc, valid_ratios=valid_ratios)
            char_output = decoder_output[:, i, :]  # bsz * num_classes
            char_output = F.softmax(char_output, -1)
            outputs.append(char_output)
            _, max_idx = torch.max(char_output, dim=1, keepdim=False)
            char_embedding = self.embedding(max_idx)  # bsz * emb_dim
            if i < seq_len:
                decoder_input[:, i + 1, :] = char_embedding

        outputs = torch.stack(outputs, 1)  # bsz * seq_len * num_classes

        return outputs


@DECODERS.register_module()
class SequentialSARDecoder(BaseDecoder):
    """Implementation Sequential Decoder module in `SAR.

    <https://arxiv.org/abs/1811.00751>`_.

    Args:
        num_classes (int): Output class number :math:`C`.
        enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
        dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
        dec_do_rnn (float): Dropout of RNN layer in decoder.
        dec_gru (bool): If True, use GRU, else LSTM in decoder.
        d_k (int): Dim of conv layers in attention module.
        d_model (int): Dim of channels from backbone :math:`D_i`.
        d_enc (int): Dim of encoder RNN layer :math:`D_m`.
        pred_dropout (float): Dropout probability of prediction layer.
        max_seq_len (int): Maximum sequence length during decoding.
        mask (bool): If True, mask padding in feature map.
        start_idx (int): Index of start token.
        padding_idx (int): Index of padding token.
        pred_concat (bool): If True, concat glimpse feature from
            attention with holistic feature and hidden state.
    """

    def __init__(self,
                 num_classes=37,
                 enc_bi_rnn=False,
                 dec_bi_rnn=False,
                 dec_gru=False,
                 d_k=64,
                 d_model=512,
                 d_enc=512,
                 pred_dropout=0.0,
                 mask=True,
                 max_seq_len=40,
                 start_idx=0,
                 padding_idx=92,
                 pred_concat=False,
                 init_cfg=None,
                 **kwargs):
        super().__init__(init_cfg=init_cfg)

        self.num_classes = num_classes
        self.enc_bi_rnn = enc_bi_rnn
        self.d_k = d_k
        self.start_idx = start_idx
        self.dec_gru = dec_gru
        self.max_seq_len = max_seq_len
        self.mask = mask
        self.pred_concat = pred_concat

        encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
        decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)
        # 2D attention layer
        self.conv1x1_1 = nn.Conv2d(
            decoder_rnn_out_size, d_k, kernel_size=1, stride=1)
        self.conv3x3_1 = nn.Conv2d(
            d_model, d_k, kernel_size=3, stride=1, padding=1)
        self.conv1x1_2 = nn.Conv2d(d_k, 1, kernel_size=1, stride=1)

        # Decoder rnn layer
        if dec_gru:
            self.rnn_decoder_layer1 = nn.GRUCell(encoder_rnn_out_size,
                                                 encoder_rnn_out_size)
            self.rnn_decoder_layer2 = nn.GRUCell(encoder_rnn_out_size,
                                                 encoder_rnn_out_size)
        else:
            self.rnn_decoder_layer1 = nn.LSTMCell(encoder_rnn_out_size,
                                                  encoder_rnn_out_size)
            self.rnn_decoder_layer2 = nn.LSTMCell(encoder_rnn_out_size,
                                                  encoder_rnn_out_size)

        # Decoder input embedding
        self.embedding = nn.Embedding(
            self.num_classes, encoder_rnn_out_size, padding_idx=padding_idx)

        # Prediction layer
        self.pred_dropout = nn.Dropout(pred_dropout)
        pred_num_class = num_classes - 1  # ignore padding index
        if pred_concat:
            fc_in_channel = decoder_rnn_out_size + d_model + d_enc
        else:
            fc_in_channel = d_model
        self.prediction = nn.Linear(fc_in_channel, pred_num_class)

    def _2d_attention(self,
                      y_prev,
                      feat,
                      holistic_feat,
                      hx1,
                      cx1,
                      hx2,
                      cx2,
                      valid_ratios=None):
        _, _, h_feat, w_feat = feat.size()
        if self.dec_gru:
            hx1 = cx1 = self.rnn_decoder_layer1(y_prev, hx1)
            hx2 = cx2 = self.rnn_decoder_layer2(hx1, hx2)
        else:
            hx1, cx1 = self.rnn_decoder_layer1(y_prev, (hx1, cx1))
            hx2, cx2 = self.rnn_decoder_layer2(hx1, (hx2, cx2))

        tile_hx2 = hx2.view(hx2.size(0), hx2.size(1), 1, 1)
        attn_query = self.conv1x1_1(tile_hx2)  # bsz * attn_size * 1 * 1
        attn_query = attn_query.expand(-1, -1, h_feat, w_feat)
        attn_key = self.conv3x3_1(feat)
        attn_weight = torch.tanh(torch.add(attn_key, attn_query, alpha=1))
        attn_weight = self.conv1x1_2(attn_weight)
        bsz, c, h, w = attn_weight.size()
        assert c == 1

        if valid_ratios is not None:
            # cal mask of attention weight
            attn_mask = torch.zeros_like(attn_weight)
            for i, valid_ratio in enumerate(valid_ratios):
                valid_width = min(w, math.ceil(w * valid_ratio))
                attn_mask[i, :, :, valid_width:] = 1
            attn_weight = attn_weight.masked_fill(attn_mask.bool(),
                                                  float('-inf'))

        attn_weight = F.softmax(attn_weight.view(bsz, -1), dim=-1)
        attn_weight = attn_weight.view(bsz, c, h, w)

        attn_feat = torch.sum(
            torch.mul(feat, attn_weight), (2, 3), keepdim=False)  # n * c

        # linear transformation
        if self.pred_concat:
            y = self.prediction(torch.cat((hx2, attn_feat, holistic_feat), 1))
        else:
            y = self.prediction(attn_feat)

        return y, hx1, hx1, hx2, hx2

    def forward_train(self, feat, out_enc, targets_dict, img_metas=None):
        """
        Args:
            feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
            out_enc (Tensor): Encoder output of shape
                :math:`(N, D_m, H, W)`.
            targets_dict (dict): A dict with the key ``padded_targets``, a
                tensor of shape :math:`(N, T)`. Each element is the index of a
                character.
            img_metas (dict): A dict that contains meta information of input
                images. Preferably with the key ``valid_ratio``.

        Returns:
            Tensor: A raw logit tensor of shape :math:`(N, T, C-1)`.
        """
        if img_metas is not None:
            assert utils.is_type_list(img_metas, dict)
            assert len(img_metas) == feat.size(0)

        valid_ratios = None
        if img_metas is not None:
            valid_ratios = [
                img_meta.get('valid_ratio', 1.0) for img_meta in img_metas
            ] if self.mask else None

        if self.train_mode:
            targets = targets_dict['padded_targets'].to(feat.device)
            tgt_embedding = self.embedding(targets)

        outputs = []
        start_token = torch.full((feat.size(0), ),
                                 self.start_idx,
                                 device=feat.device,
                                 dtype=torch.long)
        start_token = self.embedding(start_token)
        for i in range(-1, self.max_seq_len):
            if i == -1:
                if self.dec_gru:
                    hx1 = cx1 = self.rnn_decoder_layer1(out_enc)
                    hx2 = cx2 = self.rnn_decoder_layer2(hx1)
                else:
                    hx1, cx1 = self.rnn_decoder_layer1(out_enc)
                    hx2, cx2 = self.rnn_decoder_layer2(hx1)
                if not self.train_mode:
                    y_prev = start_token
            else:
                if self.train_mode:
                    y_prev = tgt_embedding[:, i, :]
                y, hx1, cx1, hx2, cx2 = self._2d_attention(
                    y_prev,
                    feat,
                    out_enc,
                    hx1,
                    cx1,
                    hx2,
                    cx2,
                    valid_ratios=valid_ratios)
                if self.train_mode:
                    y = self.pred_dropout(y)
                else:
                    y = F.softmax(y, -1)
                    _, max_idx = torch.max(y, dim=1, keepdim=False)
                    char_embedding = self.embedding(max_idx)
                    y_prev = char_embedding
                outputs.append(y)

        outputs = torch.stack(outputs, 1)

        return outputs

    def forward_test(self, feat, out_enc, img_metas):
        """
        Args:
            feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
            out_enc (Tensor): Encoder output of shape
                :math:`(N, D_m, H, W)`.
            img_metas (dict): A dict that contains meta information of input
                images. Preferably with the key ``valid_ratio``.

        Returns:
            Tensor: A raw logit tensor of shape :math:`(N, T, C-1)`.
        """
        if img_metas is not None:
            assert utils.is_type_list(img_metas, dict)
            assert len(img_metas) == feat.size(0)

        return self.forward_train(feat, out_enc, None, img_metas)