Spaces:
Sleeping
Sleeping
File size: 4,380 Bytes
2f43921 809ed8d 2f43921 809ed8d 2f43921 809ed8d 2f43921 809ed8d 2f43921 809ed8d 2f43921 3fef0ca 8850909 a452def 8da63a9 2f43921 3fef0ca 2f43921 809ed8d 2f43921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import gradio as gr
import torch
import open_clip
import mediapy as media
from optim_utils import *
import argparse
# load args
args = argparse.Namespace()
args.__dict__.update(read_json("sample_config.json"))
args.print_step = None
# load model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, _, preprocess = open_clip.create_model_and_transforms(args.clip_model, pretrained=args.clip_pretrain, device=device)
args.counter = 0
def inference(target_image, prompt_len, iter):
args.counter += 1
print(args.counter)
if prompt_len is not None:
args.prompt_len = int(prompt_len)
else:
args.prompt_len = 8
if iter is not None:
args.iter = int(iter)
else:
args.iter = 1000
learned_prompt = optimize_prompt(model, preprocess, args, device, target_images=[target_image])
return learned_prompt
def inference_text(target_prompt, prompt_len, iter):
args.counter += 1
print(args.counter)
if prompt_len is not None:
args.prompt_len = min(int(prompt_len), 75)
else:
args.prompt_len = 8
if iter is not None:
args.iter = min(int(iter), 3000)
else:
args.iter = 1000
learned_prompt = optimize_prompt(model, preprocess, args, device, target_prompts=[target_prompt])
return learned_prompt
gr.Progress(track_tqdm=True)
demo = gr.Blocks()
with demo:
gr.Markdown("# PEZ Dispenser")
gr.Markdown("## Hard Prompts Made Easy (PEZ)")
gr.Markdown("*Want to generate a text prompt for your image that is useful for Stable Diffusion?*")
gr.Markdown("This space can either generate a text fragment that describes your image, or it can shorten an existing text prompt. This space is using OpenCLIP-ViT/H, the same text encoder used by Stable Diffusion V2. After you generate a prompt, try it out on Stable Diffusion [here](https://huggingface.co/stabilityai/stable-diffusion-2-1-base), [here](https://huggingface.co/spaces/stabilityai/stable-diffusion) or on [Midjourney](https://docs.midjourney.com/). For a quick PEZ demo, try clicking on one of the examples at the bottom of this page.")
gr.Markdown("For additional details, you can check out the [paper](https://arxiv.org/abs/2302.03668) and the code on [Github](https://github.com/YuxinWenRick/hard-prompts-made-easy).")
gr.Markdown("Note: Generation with 1000 steps takes ~60 seconds with a T4. Don't want to wait? You can also run on [Google Colab](https://colab.research.google.com/drive/1VSFps4siwASXDwhK_o29dKA9COvTnG8A?usp=sharing). Or, you can reduce the number of steps.")
gr.HTML("""
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/tomg-group-umd/pez-dispenser?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>""")
with gr.Row():
with gr.Column():
gr.Markdown("### Image to Prompt")
input_image = gr.inputs.Image(type="pil", label="Target Image")
image_button = gr.Button("Generate Prompt")
gr.Markdown("### Long Prompt to Short Prompt")
input_prompt = gr.Textbox(label="Target Prompt")
prompt_button = gr.Button("Distill Prompt")
prompt_len_field = gr.Number(label="Prompt Length (max 75, recommend 8-16)", value=8)
num_step_field = gr.Number(label="Optimization Steps (max 3000 because of limited resources)", value=1000)
with gr.Column():
gr.Markdown("### Learned Prompt")
output_prompt = gr.outputs.Textbox(label="Learned Prompt")
image_button.click(inference, inputs=[input_image, prompt_len_field, num_step_field], outputs=output_prompt)
prompt_button.click(inference_text, inputs=[input_prompt, prompt_len_field, num_step_field], outputs=output_prompt)
gr.Examples([["sample.jpeg", 8, 1000]], inputs=[input_image, prompt_len_field, num_step_field], fn=inference, outputs=output_prompt, cache_examples=True)
gr.Examples([["digital concept art of old wooden cabin in florida swamp, trending on artstation", 3, 1000]], inputs=[input_prompt, prompt_len_field, num_step_field], fn=inference_text, outputs=output_prompt, cache_examples=True)
demo.launch(enable_queue=True)
|