File size: 38,811 Bytes
1fc4a91
fa77a94
9bf51b3
7a55bf3
cdcd811
daeee2d
 
 
a19e57a
15db416
c0d0912
c7ea4e6
2db9643
ed020d7
a12c054
44997cc
d0e9c6f
716e382
c99cf8d
096c8a3
11542b4
000c43f
f969130
ccf297a
2147584
ef5a116
21b7e4a
09fba9b
6e689e9
cabd8bd
8dedeb1
21fedd1
59d45fa
e078ee3
6fdec3c
0734a05
45cea5d
000c43f
1fc4a91
 
5da0d3d
a359b6d
cd7f3ee
a359b6d
 
6cf80c2
a359b6d
6cf80c2
a359b6d
 
 
1b101d7
 
 
a359b6d
5e22611
a359b6d
5e22611
 
a359b6d
 
 
 
 
5e22611
a359b6d
6c7b91d
 
a359b6d
0508515
6f7ae8f
0508515
6f7ae8f
 
 
 
 
 
a359b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e22611
a359b6d
 
 
0508515
69f4625
0508515
9f8acba
 
 
 
0508515
9f8acba
 
 
0508515
9f8acba
 
 
 
0508515
9f8acba
 
 
0508515
 
 
 
 
 
 
 
a359b6d
aa33c7d
a359b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97f9c0c
a359b6d
 
 
 
 
 
 
97cc1f0
 
 
 
 
 
 
 
 
 
 
 
 
eebc5e9
 
 
 
 
 
359e6bf
4746b63
97cc1f0
b65cd60
 
 
97cc1f0
1b101d7
 
 
 
cffda6e
1b101d7
 
6f7ae8f
 
1b101d7
 
cffda6e
2db66d7
6f7ae8f
1b101d7
6f7ae8f
940a33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8dc4cf
6f7ae8f
 
359e6bf
940a33d
6f7ae8f
 
 
1707f2c
6f7ae8f
 
97cc1f0
eebc5e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97cc1f0
 
 
 
 
 
 
 
 
 
 
 
e7d490b
 
9e2e3c5
 
 
 
e7d490b
9e2e3c5
 
 
 
 
e7d490b
 
1fc4a91
 
 
 
877dee8
3e688a4
97cc1f0
1fc4a91
 
 
c3062cb
1fc4a91
c3062cb
877dee8
97cc1f0
 
 
 
f839db8
359e6bf
97cc1f0
 
f839db8
97cc1f0
f839db8
97cc1f0
 
f839db8
97cc1f0
f839db8
b65cd60
 
75d45a1
97cc1f0
 
359e6bf
5cb92bb
e7d490b
97cc1f0
 
5e22611
877dee8
 
 
 
 
 
453901b
 
 
 
877dee8
 
 
 
453901b
877dee8
 
a359b6d
877dee8
 
a359b6d
877dee8
 
a359b6d
877dee8
 
 
 
c57aea2
877dee8
 
c57aea2
 
 
 
 
 
 
ebc5fd4
c57aea2
 
ebc5fd4
 
 
c57aea2
877dee8
 
1b101d7
 
 
877dee8
 
1b101d7
 
6f7ae8f
1b101d7
 
 
2db66d7
6f7ae8f
1b101d7
6f7ae8f
 
 
1b101d7
 
877dee8
6f7ae8f
 
1707f2c
6f7ae8f
 
 
 
1fc4a91
 
8002875
9761641
 
877dee8
 
3e688a4
877dee8
c52f268
1fc4a91
877dee8
8002875
 
877dee8
 
4eca7fa
ebc5fd4
 
877dee8
 
 
 
 
c57aea2
877dee8
1fc4a91
877dee8
 
6b22177
1fc4a91
6b22177
77195a0
6b22177
3e688a4
ae2e61f
 
 
8c948ed
 
1fc4a91
 
 
 
6b22177
 
3b5016f
 
 
6b22177
 
 
 
 
3b5016f
 
901b267
97cc1f0
a05b949
 
096c8a3
 
 
 
 
 
 
 
e55b1e1
 
 
 
 
 
 
 
 
 
 
 
096c8a3
 
 
 
 
 
 
 
 
e55b1e1
 
096c8a3
eebc5e9
096c8a3
 
 
 
 
 
 
a05b949
 
7ca5f13
 
 
 
a05b949
7ca5f13
 
 
 
 
 
 
a05b949
7ca5f13
 
 
 
 
 
 
 
a05b949
7ca5f13
a05b949
7ca5f13
f839db8
 
 
 
a05b949
7ca5f13
a05b949
7ca5f13
 
a05b949
 
 
5f04ab8
9f8acba
69f4625
 
211a2dd
 
 
 
 
 
 
 
9f8acba
 
 
 
 
 
 
69f4625
9f8acba
 
 
 
69f4625
9f8acba
 
69f4625
9f8acba
211a2dd
69f4625
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8acba
 
bf228e4
3fdba19
 
 
 
9f8acba
 
 
 
 
bf228e4
9f8acba
 
 
 
 
 
 
 
69f4625
bf228e4
 
 
 
 
 
 
 
 
 
 
 
211a2dd
 
 
 
bf228e4
69f4625
9f8acba
 
69f4625
 
bf228e4
211a2dd
9f8acba
69f4625
 
 
bf228e4
9f8acba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f839db8
211a2dd
f839db8
 
 
 
 
3fdba19
9f8acba
f839db8
9f8acba
 
 
 
 
 
211a2dd
9f8acba
 
 
 
 
 
 
bf228e4
211a2dd
 
9f8acba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f4625
 
f839db8
 
 
 
 
3fdba19
69f4625
 
3fdba19
69f4625
 
 
 
e084c52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408bc8f
e084c52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f15b78d
e084c52
 
 
 
 
 
 
f839db8
 
e084c52
 
 
f839db8
e084c52
f839db8
e084c52
 
 
 
f839db8
e084c52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fc4a91
97cc1f0
c4346cf
db51da1
871d7f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
# ----- Deployment Log -----------------------------------------------------------------

# added beta 4305ed7
# added beta 4307f62
# added presidents beta
# added painting concept
# added presidents concept
# added presidents concept #2
# added philip guston concept (retry)
# added Ken Price trainings (retry)
# added Andrei Tarkovsky polaroid training 
# added Andrei Tarkovsky polaroid training (retry)
# added HairBot training
# redeploy with canny edge tab
# try to redeploy
# try to redeploy again
# add myst training
# add coin training
# add zodiac coin training
# readding artbot tab after dependency crashes fixed
# attempt redeploy after crash
# attempt redeploy after crash 2
# attempt redeploy after crash 3
# attempt redeploy after crash 4
# attempt redeploy after crash 5
# attempt redeploy after crash 6
# attempt redeploy after crash 7
# attempt redeploy after crash 8
# redeploy after locked up build 1
# added woodblock beta training
# attempt redeploy after crash
# added new concept
# attempting reboot 2
# attempting reboot 1
# restart after configuration error
# restart after runtime build error
# force test redeploy


# ----- General Setup -----------------------------------------------------------------

import requests
import os
import gradio as gr
import wget
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
from huggingface_hub import HfApi
from transformers import CLIPTextModel, CLIPTokenizer
import html
import datetime

image_count = 0

community_icon_html = ""

loading_icon_html = ""
share_js = ""

api = HfApi()
models_list = api.list_models(author="sd-concepts-library", sort="likes", direction=-1)
models = []

my_token = os.environ['api_key']

# pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", revision="fp16", torch_dtype=torch.float16, use_auth_token=my_token).to("cuda")
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", variant="fp16", torch_dtype=torch.float16, use_auth_token=my_token).to("cuda")


def check_prompt(prompt):
    SPAM_WORDS = ['Π”', 'oob', 'reast'] # only necessary to limit spam
    for spam_word in SPAM_WORDS:
        if spam_word in prompt:
            return False
    return True


def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
  loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
  
  _old_token = token
  # separate token and the embeds
  trained_token = list(loaded_learned_embeds.keys())[0]
  embeds = loaded_learned_embeds[trained_token]

  # cast to dtype of text_encoder
  dtype = text_encoder.get_input_embeddings().weight.dtype
  
  # add the token in tokenizer
  token = token if token is not None else trained_token
  num_added_tokens = tokenizer.add_tokens(token)
  i = 1
  while(num_added_tokens == 0):
    token = f"{token[:-1]}-{i}>"
    num_added_tokens = tokenizer.add_tokens(token)
    i+=1
  
  # resize the token embeddings
  text_encoder.resize_token_embeddings(len(tokenizer))
  
  # get the id for the token and assign the embeds
  token_id = tokenizer.convert_tokens_to_ids(token)
  text_encoder.get_input_embeddings().weight.data[token_id] = embeds
  return token



# ----- ControlNet Canny Edges Pipe / Setup -----------------------------------------------------------------

# import gradio as gr
# from PIL import Image
# import numpy as np
# import cv2

# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
# from diffusers import UniPCMultistepScheduler
# import torch

# controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
# controlnet_pipe = StableDiffusionControlNetPipeline.from_pretrained(
#     "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
# )

# controlnet_pipe.scheduler = UniPCMultistepScheduler.from_config(controlnet_pipe.scheduler.config)
# controlnet_pipe.enable_model_cpu_offload()
# controlnet_pipe.enable_xformers_memory_efficient_attention()





# ----- Load All models / concepts -----------------------------------------------------------------


ahx_model_list = [model for model in models_list if "ahx" in model.modelId]
ahx_dropdown_list = [model for model in models_list if "ahx-model" in model.modelId]


for model in ahx_model_list:
  model_content = {}
  model_id = model.modelId
  model_content["id"] = model_id
  embeds_url = f"https://huggingface.co/{model_id}/resolve/main/learned_embeds.bin"
  os.makedirs(model_id,exist_ok = True)
  if not os.path.exists(f"{model_id}/learned_embeds.bin"):
    try:
      wget.download(embeds_url, out=model_id)
    except:
      continue

  token_identifier = f"https://huggingface.co/{model_id}/raw/main/token_identifier.txt"
  response = requests.get(token_identifier)
  token_name = response.text
  
  concept_type = f"https://huggingface.co/{model_id}/raw/main/type_of_concept.txt"
  response = requests.get(concept_type)
  concept_name = response.text
  model_content["concept_type"] = concept_name
  images = []
  for i in range(4):
    url = f"https://huggingface.co/{model_id}/resolve/main/concept_images/{i}.jpeg"
    image_download = requests.get(url)
    url_code = image_download.status_code
    if(url_code == 200):
      file = open(f"{model_id}/{i}.jpeg", "wb") ## Creates the file for image
      file.write(image_download.content) ## Saves file content
      file.close()
      images.append(f"{model_id}/{i}.jpeg")
  model_content["images"] = images
  #if token cannot be loaded, skip it
  try:
    learned_token = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", pipe.text_encoder, pipe.tokenizer, token_name)
    # _learned_token_controlnet = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", controlnet_pipe.text_encoder, controlnet_pipe.tokenizer, token_name)
  except: 
    continue
  model_content["token"] = learned_token
  models.append(model_content)
  models.append(model_content)


# -----------------------------------------------------------------------------------------------


model_tags = [model.modelId.split("/")[1] for model in ahx_model_list]
model_tags.sort()
import random 

DROPDOWNS = {}

for model in model_tags:
  if model != "ahx-model-1" and model != "ahx-model-2":
    DROPDOWNS[model] = f" in the style of <{model}>"

TOKENS = []

for model in model_tags:
  if model != "ahx-model-1" and model != "ahx-model-2":
    TOKENS.append(f"<{model}>")

# def image_prompt(prompt, dropdown, guidance, steps, seed, height, width, negative_prompt=""):
def image_prompt(prompt, guidance, steps, seed, height, width, negative_prompt=""):
  # prompt = prompt + DROPDOWNS[dropdown]
  square_pixels = height * width
  if square_pixels > 640000:
      height = 640000 // width
  generator = torch.Generator(device="cuda").manual_seed(int(seed))

  height=int((height // 8) * 8)
  width=int((width // 8) * 8)

  # image_count += 1
  curr_time = datetime.datetime.now()

  is_clean = check_prompt(prompt)

  print("----- advanced tab prompt ------------------------------")
  print(f"prompt: {prompt}, size: {width}px x {height}px, guidance: {guidance}, steps: {steps}, seed: {int(seed)}")
  # print(f"image_count: {image_count}, datetime: `{e}`")
  print(f"datetime: `{curr_time}`")
  print(f"is_prompt_clean: {is_clean}")
  print("-------------------------------------------------------")

  input_prompt = prompt.replace(">", "").replace("<", "")
  input_prompt = input_prompt.split(" ")

  tokens = []
  prompt_words = []

  for word in input_prompt:
    if "ahx" in word:
      tokens.append(word.replace("ahx-beta-", "").replace("ahx-model-", ""))
    else:
      prompt_words.append(word)

  joined_prompt_text = f"\"{' '.join(prompt_words)}\""
  file_name = f"ahx-{'-'.join(tokens)}-{seed}.png"

  gallery_label = f"{joined_prompt_text} | {file_name}"
    
  if is_clean:
    return (
      pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=height, width=width, negative_prompt=negative_prompt).images[0], 
      f"{gallery_label}\n\nprompt: '{prompt}', seed = {int(seed)},\nheight: {height}px, width: {width}px,\nguidance: {guidance}, steps: {steps}, negative prompt: {negative_prompt}"
    )
  else:
    return (
      pipe(prompt="", guidance_scale=0, num_inference_steps=1, generator=generator, height=32, width=32).images[0], 
      f"Prompt violates Hugging Face's Terms of Service"
    )


# New ArtBot image function -------------------------------------------------
# def image_prompt(prompt, dropdown, guidance, steps, seed, height, width, negative_prompt=""):
# def artbot_image(prompt, guidance, steps, seed, height, width, negative_prompt=""):
def artbot_image():
  guidance = 7.5
  steps = 30
  height = 768
  width = 768
  negative_prompt = ""

  all_models = [token for token in TOKENS if 'ahx-' in token]
  model_1 = random.choice(all_models)
  model_2 = random.choice(all_models)

  prompt = f"{model_1} {model_2}"

  seed = random_seed()
    
    
  square_pixels = height * width
  if square_pixels > 640000:
      height = 640000 // width
  generator = torch.Generator(device="cuda").manual_seed(int(seed))

  height=int((height // 8) * 8)
  width=int((width // 8) * 8)

  # image_count += 1
  curr_time = datetime.datetime.now()

  is_clean = check_prompt(prompt)

  print("----- advanced tab prompt ------------------------------")
  print(f"prompt: {prompt}, size: {width}px x {height}px, guidance: {guidance}, steps: {steps}, seed: {int(seed)}")
  # print(f"image_count: {image_count}, datetime: `{e}`")
  print(f"datetime: `{curr_time}`")
  print(f"is_prompt_clean: {is_clean}")
  print("-------------------------------------------------------")

  if is_clean:
    return (
      pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=height, width=width, negative_prompt=negative_prompt).images[0], 
      f"prompt: '{prompt}', seed = {int(seed)},\nheight: {height}px, width: {width}px,\nguidance: {guidance}, steps: {steps}, negative prompt: {negative_prompt}"
    )
  else:
    return (
      pipe(prompt="", guidance_scale=0, num_inference_steps=1, generator=generator, height=32, width=32).images[0], 
      f"Prompt violates Hugging Face's Terms of Service"
    )




      

def default_guidance():
  return 7.5

def default_steps():
  return 30

def default_pixel():
  return 768

def random_seed():
  return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615



def get_models_text():
  # make markdown text for available models...
  markdown_model_tags = [f"<{model}>" for model in model_tags if model != "ahx-model-1" and model != "ahx-model-2"]
  markdown_model_text = "\n".join(markdown_model_tags)

  # make markdown text for available betas...
  markdown_betas_tags = [f"<{model}>" for model in model_tags if "beta" in model]
  markdown_betas_text = "\n".join(markdown_model_tags)

  return f"## Available Artist Models / Concepts:\n" + markdown_model_text + "\n\n## Available Beta Models / Concepts:\n" + markdown_betas_text



# ----- Advanced Tab -----------------------------------------------------------------

with gr.Blocks(css=".gradio-container {max-width: 650px}") as advanced_tab:
  gr.Markdown('''
      # <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> Advanced Prompting

      Freely prompt artist models / concepts with open controls for size, inference steps, seed number etc. Text prompts need to manually include artist concept / model tokens which can be found in the welcome tab and beta tab (ie "an alien in the style of <ahx-model-12>"). You can also mix and match models (ie "a landscape in the style of <ahx-model-14> and <ahx-beta-4307f62>>"). To see example images or for more information see the links below.
      <br><br>
      <a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
      <br>
      <a href="https://discord.gg/ZctfW4SvGw">https://discord.com</a><br>
      <br>
  ''')

  with gr.Row():
    prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
  with gr.Row():
    seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
    negative_prompt = gr.Textbox(label="negative prompt (optional)", elem_id="input-text")
  with gr.Row():
    with gr.Column():
      guidance = gr.Slider(0, 10, label="guidance", dtype=float, value=default_guidance, step=0.1, interactive=True)
    with gr.Column():
      steps = gr.Slider(1, 100, label="inference steps", dtype=int, value=default_steps, step=1, interactive=True)
  with gr.Row():
    with gr.Column():
      width = gr.Slider(144, 4200, label="width", dtype=int, value=default_pixel, step=8, interactive=True)
    with gr.Column():
      height = gr.Slider(144, 4200, label="height", dtype=int, value=default_pixel, step=8, interactive=True)
  gr.Markdown("<u>heads-up</u>: Height multiplied by width should not exceed about 645,000 or an error may occur. If an error occours refresh your browser tab or errors will continue. If you exceed this range the app will attempt to avoid an error by lowering your input height. We are actively seeking out ways to handle higher resolutions!")
  
  go_button = gr.Button("generate image", elem_id="go-button")
  output = gr.Image(elem_id="output-image")
  output_text = gr.Text(elem_id="output-text")
  go_button.click(fn=image_prompt, inputs=[prompt, guidance, steps, seed, height, width, negative_prompt], outputs=[output, output_text])
  gr.Markdown("For a complete list of usable models and beta concepts check out the dropdown selectors in the welcome and beta concepts tabs or the project's main website or our discord.\n\nhttp://www.astronaut.horse/concepts")
    

# -----------------------------------------------------------------------------------------------

model_tags = [model.modelId.split("/")[1] for model in ahx_model_list]
model_tags.sort()
import random 

DROPDOWNS = {}

# set a default for empty entries...
DROPDOWNS[''] = ''

# populate the dropdowns with full appendable style strings...
for model in model_tags:
  if model != "ahx-model-1" and model != "ahx-model-2":
    DROPDOWNS[model] = f" in the style of <{model}>"

# set pipe param defaults...
def default_guidance():
  return 7.5

def default_steps():
  return 30

def default_pixel():
  return 768

def random_seed():
  return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615


def simple_image_prompt(prompt, dropdown, size_dropdown):
  seed = random_seed()
  guidance = 7.5

  if size_dropdown == 'landscape':
      height = 624
      width = 1024
  elif size_dropdown == 'portrait':
      height = 1024
      width = 624
  elif size_dropdown == 'square':
      height = 768
      width = 768
  else:
      height = 1024
      width = 624
      
  steps = 30

  height=int((height // 8) * 8)
  width=int((width // 8) * 8)

  prompt = prompt + DROPDOWNS[dropdown]
  generator = torch.Generator(device="cuda").manual_seed(int(seed))

  curr_time = datetime.datetime.now()
  is_clean = check_prompt(prompt)
    
  print("----- welcome / beta tab prompt ------------------------------")
  print(f"prompt: {prompt}, size: {width}px x {height}px, guidance: {guidance}, steps: {steps}, seed: {int(seed)}")
  print(f"datetime: `{curr_time}`")
  print(f"is_prompt_clean: {is_clean}")
  print("-------------------------------------------------------")

  if is_clean:
    return (
      pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=height, width=width).images[0], 
      f"prompt: '{prompt}', seed = {int(seed)},\nheight: {height}px, width: {width}px,\nguidance: {guidance}, steps: {steps}"
      )
  else:
    return (
      pipe(prompt="", guidance_scale=0, num_inference_steps=1, generator=generator, height=32, width=32).images[0], 
      f"Prompt violates Hugging Face's Terms of Service"
    )

  
  
# ----- Welcome Tab -----------------------------------------------------------------

rand_model_int = 2

with gr.Blocks(css=".gradio-container {max-width: 650px}") as new_welcome:
  gr.Markdown('''
      # <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> Stable Diffusion Artist Collaborations

      Use the dropdown below to select models / concepts trained on images chosen by collaborating visual artists. Prompt concepts with any text. To see example images or for more information on the project see the main project page or the discord community linked below. The images you generate here are not recorded unless you save them, they belong to everyone and no one.
      <br><br>
      <a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
      <br>
      <a href="https://discord.gg/ZctfW4SvGw">https://discord.com</a><br>
  ''')

  with gr.Row():
    dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-model' in dropdown], label="choose style...")
    size_dropdown = gr.Dropdown(['square', 'portrait', 'landscape'], label="choose size...")
  prompt = gr.Textbox(label="image prompt...", elem_id="input-text")

  go_button = gr.Button("generate image", elem_id="go-button")
  output = gr.Image(elem_id="output-image")
  output_text = gr.Text(elem_id="output-text")
  go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown, size_dropdown], outputs=[output, output_text])

# Old Text --> This tool allows you to run your own text prompts into fine-tuned artist concepts from an ongoing series of Stable Diffusion collaborations with visual artists linked below. Select an artist's fine-tuned concept / model from the dropdown and enter any desired text prompt. You can check out example output images and project details on the project's webpage. Additionally you can play around with more controls in the Advanced Prompting tab. <br> The images you generate here are not recorded unless you choose to share them. Please share any cool images / prompts on the community tab here or our discord server!



# ----- Beta Concepts -----------------------------------------------------------------

with gr.Blocks() as beta:
  gr.Markdown('''
      # <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> Beta Models / Concepts

      This tool allows you to test out newly trained beta concepts trained by artists. To add your own beta concept see the link below. This uses free access to Google's GPUs but will require a password / key that you can get from the discord server. After a new concept / model is trained it will be automatically added to this tab when the app is redeployed. 
      <br><br>
      <a href="https://colab.research.google.com/drive/1FhOpcEjHT7EN53Zv9MFLQTytZp11wjqg#scrollTo=hzUluHT-I42O">train your own beta model / concept</a>
      <br>
      <a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
      <br>
      <a href="https://discord.gg/ZctfW4SvGw">https://discord.com</a><br>
      <br>
  ''')

  with gr.Row():
    dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-beta' in dropdown], label="choose style...")
    size_dropdown = gr.Dropdown(['square', 'portrait', 'landscape'], label="choose size...")
  prompt = gr.Textbox(label="image prompt...", elem_id="input-text")

  go_button = gr.Button("generate image", elem_id="go-button")
  output = gr.Image(elem_id="output-image")
  output_text = gr.Text(elem_id="output-text")
  go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown, size_dropdown], outputs=[output, output_text])





# ----- Artbot Tab -----------------------------------------------------------------

import random 

with gr.Blocks(css=".gradio-container {max-width: 650px}") as artbot_1:
  gr.Markdown('''
      # <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> Astronaut Horse
  ''')
  with gr.Accordion(label='project information...', open=False):
      gr.Markdown('''
          These images are collaborations between visual artists and Stable Diffusion, a free and open-source generative AI model fine-tuned on input artworks chosen by the artists. The images are generated in real time and cannot be reproduced unless you choose to save them. 
          <br><br>
          The hardware resources to run this process have been generously provided at no cost by Hugging Face via a Community GPU Grant. For full control over all input parameters see the other tabs on this application. For more images and information on the project see the links below.
          <br><br>
          The images you generate here are not recorded unless you save them, they belong to everyone and no one.
          <br><br>
          <a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
          <br>
          <a href="https://discord.gg/ZctfW4SvGw">https://discord.com</a><br>
      ''')

  # with gr.Row():
  #   dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-model' in dropdown], label="choose style...")
  #   size_dropdown = gr.Dropdown(['square', 'portrait', 'landscape'], label="choose size...")
  # prompt = gr.Textbox(label="image prompt...", elem_id="input-text")


  go_button = gr.Button("generate image", elem_id="go-button")
  output = gr.Image(elem_id="output-image")
  with gr.Accordion(label='image information...', open=False):
    output_text = gr.Text(elem_id="output-text")
  # go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown, size_dropdown], outputs=[output, output_text])
  go_button.click(fn=artbot_image, inputs=[], outputs=[output, output_text])


    
    
    
    
    
# ----- Canny Edge Tab -----------------------------------------------------------------

from PIL import Image
import gradio as gr
import numpy as np
import cv2

# Define a function to process the uploaded image
def canny_process_image(input_image, input_low_threshold, input_high_threshold, input_invert):
   # Convert the input image to a NumPy array
   np_image = np.array(input_image)
   output_image = input_image  # For example, just return the input image
   numpy_image = np.array(output_image)
   # Return the processed image

   # low_threshold = 100
   # high_threshold = 200
   canny_1 = cv2.Canny(numpy_image, input_low_threshold, input_high_threshold)
   canny_1 = canny_1[:, :, None]
   canny_1 = np.concatenate([canny_1, canny_1, canny_1], axis=2)
   if input_invert:
     canny_1 = 255 - canny_1
   canny_2 = Image.fromarray(canny_1)

   return np.array(canny_2)

# Define the input and output interfaces
canny_input_image = gr.inputs.Image()
canny_input_low_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Lower Threshold:", default=100)
canny_input_high_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Upper Threshold:", default=200)
canny_input_invert = gr.inputs.Checkbox(label="Invert Image")

canny_outputs = gr.outputs.Image(type="numpy")

# Create the Gradio interface
canny_interface = gr.Interface(fn=canny_process_image, inputs=[canny_input_image, canny_input_low_threshold, canny_input_high_threshold, canny_input_invert], outputs=canny_outputs, title='Canny Edge Tracing', allow_flagging='never')




# ----- New ControlNet Canny Gradio Setup with Block -----------------------------------------------------------------


# !pip install -qq diffusers==0.14.0 transformers xformers git+https://github.com/huggingface/accelerate.git
# !pip install -qq opencv-contrib-python
# !pip install -qq controlnet_aux
# !pip install -qq opencv-python
# !pip install -qq gradio
# !pip install -qq Pillow
# !pip install -qq numpy

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
from PIL import Image
import gradio as gr
import numpy as np
import torch
import cv2

controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
controlnet_pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
)

controlnet_pipe.scheduler = UniPCMultistepScheduler.from_config(controlnet_pipe.scheduler.config)
controlnet_pipe.enable_model_cpu_offload()


def controlnet_edges(canny_input_prompt, input_image, input_low_threshold, input_high_threshold, input_invert, canny_input_seed, canny_input_rotate, canny_negative_prompt):
    np_image = np.array(input_image)

    output_image = input_image
    numpy_image = np.array(output_image)

    low_threshold = 80
    high_threshold = 100
    canny_1 = cv2.Canny(numpy_image, input_low_threshold, input_high_threshold)
    canny_1 = canny_1[:, :, None]
    canny_1 = np.concatenate([canny_1, canny_1, canny_1], axis=2)
    if input_invert:
      canny_1 = 255 - canny_1

    canny_2 = Image.fromarray(canny_1)
    canny_1 = Image.fromarray(canny_1)

    if canny_input_rotate and int(canny_input_rotate) > 0:
      canny_rotation = 360 - int(canny_input_rotate)
      canny_2 = canny_2.rotate(canny_rotation, resample=Image.BICUBIC)
      canny_1 = canny_1.rotate(canny_rotation, resample=Image.BICUBIC)

    input_width, input_height = canny_2.size

    limit_size = 768
    # limit_size = 32

    # resize image
    if input_width > input_height:
        new_width = min(input_width, limit_size)
        new_height = int(new_width * input_height / input_width)
    else:
        new_height = min(input_height, limit_size)
        new_width = int(new_height * input_width / input_height)
    canny_2 = canny_2.resize((new_width, new_height))
    canny_1 = canny_1.resize((new_width, new_height))

    # resize original input image
    input_resize = np.array(input_image)
    input_resize = Image.fromarray(input_resize)
    input_resize = input_resize.resize((new_width, new_height))
    # make canny image now, after resize
    canny_resize = np.array(input_resize)
    canny_resize = cv2.Canny(canny_resize, input_low_threshold, input_high_threshold)
    canny_resize = canny_resize[:, :, None]
    canny_resize = np.concatenate([canny_resize, canny_resize, canny_resize], axis=2)
    if input_invert:
      canny_resize = 255 - canny_resize
    canny_resize = Image.fromarray(canny_resize)
    # rotate new resized canny image
    if canny_input_rotate and int(canny_input_rotate) > 0:
      canny_rotation = 360 - int(canny_input_rotate)
      canny_resize = canny_resize.rotate(canny_rotation, resample=Image.BICUBIC, expand=True)

    prompt = canny_input_prompt
    generator = torch.Generator(device="cpu").manual_seed(canny_input_seed)

    output_image = controlnet_pipe(
        prompt,
        canny_resize,
        negative_prompt=canny_negative_prompt,
        generator=generator,
        num_inference_steps=20,
    )

    return [canny_resize, output_image[0][0]]
    # return output_image[0][0]

import random 
def random_seed():
  return random.randint(0, 99999999999999)


with gr.Blocks() as canny_blocks_interface:
  gr.Markdown('''
      # <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> ControlNet + Canny Edge-Tracing
      This tool allows you to apply a Stable Diffusion text prompt to an existing image composition using an edge-tracing tool called Canny Edge Detector. Note that you cannot currently apply trained artist concepts from the other tabs in this application to this process currently as they were trained using a more recent version of Stable Diffusion. 
      <br><br>
      <a href="https://wikipedia.org/wiki/Canny_edge_detector">https://wikipedia.org/wiki/canny_edge_detector</a>
      <br>
      <a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
      <br>
      <a href="https://discord.gg/ZctfW4SvGw">https://discord.com</a><br>
      <br>
  ''')
  with gr.Row():
    with gr.Column():
      canny_input_prompt = gr.inputs.Textbox(label="enter your text prompt here")
      with gr.Accordion(label='negative prompt (optional)', open=False):
        canny_negative_prompt = gr.inputs.Textbox()
      canny_input_low_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Lower Threshold:", default=100)
      canny_input_high_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Upper Threshold:", default=120)
      canny_input_seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
      canny_input_invert = gr.inputs.Checkbox(label="invert edge tracing image")
      canny_input_rotate = gr.Dropdown([0, 90, 180, 270], label="rotate image (for smartphones)")
    with gr.Column():
      canny_input_image = gr.inputs.Image(label="input image")
      go_button = gr.Button('generate image')
  # with gr.Row():
      with gr.Accordion(label='traced edge image', open=False):
        canny_output_1 = gr.outputs.Image(type="pil", label="traced edges")
  with gr.Row():
    canny_output_2 = gr.outputs.Image(type="pil", label="final image")
  go_button.click(fn=controlnet_edges, inputs=[canny_input_prompt, canny_input_image, canny_input_low_threshold, canny_input_high_threshold, canny_input_invert, canny_input_seed, canny_input_rotate, canny_negative_prompt], outputs=[canny_output_1, canny_output_2])


# canny_blocks_interface.launch(debug=False)







# ----- Old ControlNet Canny Gradio Setup without Block (working) -----------------------------------------------------------------

# import gradio as gr
# from PIL import Image
# import numpy as np
# import cv2

# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
# from diffusers import UniPCMultistepScheduler
# import torch

# controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
# controlnet_pipe = StableDiffusionControlNetPipeline.from_pretrained(
#     "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
# )

# controlnet_pipe.scheduler = UniPCMultistepScheduler.from_config(controlnet_pipe.scheduler.config)
# controlnet_pipe.enable_model_cpu_offload()
# controlnet_pipe.enable_xformers_memory_efficient_attention()

# def controlnet_edges(canny_input_prompt, input_image, input_low_threshold, input_high_threshold, input_invert):
#     np_image = np.array(input_image)

#     output_image = input_image
#     numpy_image = np.array(output_image)

#     low_threshold = 80
#     high_threshold = 100
#     canny_1 = cv2.Canny(numpy_image, input_low_threshold, input_high_threshold)
#     canny_1 = canny_1[:, :, None]
#     canny_1 = np.concatenate([canny_1, canny_1, canny_1], axis=2)
#     if input_invert:
#       canny_1 = 255 - canny_1

#     canny_2 = Image.fromarray(canny_1)

#     prompt = canny_input_prompt
#     generator = torch.Generator(device="cpu").manual_seed(2)

#     # output_image = controlnet_pipe(
#     #     prompt,
#     #     canny_2,
#     #     negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
#     #     generator=generator,
#     #     num_inference_steps=20,
#     # )
#     output_image = controlnet_pipe(
#         prompt,
#         canny_2,
#         negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
#         num_inference_steps=20,
#     )

#     return output_image[0][0]


# canny_input_prompt = gr.inputs.Textbox(label="Enter a single word or phrase")
# canny_input_image = gr.inputs.Image()
# canny_input_low_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Lower Threshold:", default=100)
# canny_input_high_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Upper Threshold:", default=200)
# canny_input_invert = gr.inputs.Checkbox(label="Invert Image")
# canny_outputs = gr.outputs.Image(type="pil")

# make and launch the gradio app...
# controlnet_canny_interface = gr.Interface(fn=controlnet_edges, inputs=[canny_input_prompt, canny_input_image, canny_input_low_threshold, canny_input_high_threshold, canny_input_invert], outputs=canny_outputs, title='Canny Edge Tracing', allow_flagging='never')
# controlnet_canny_interface.launch()



# ----- Depth Map Tab -----------------------------------------------------------------

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import CannyDetector, ContentShuffleDetector, HEDdetector, LineartAnimeDetector, LineartDetector, MidasDetector, MLSDdetector, NormalBaeDetector, OpenposeDetector, PidiNetDetector
from PIL import Image, ImageChops, ImageOps
from diffusers.utils import load_image
from transformers import pipeline
import numpy as np
import requests
import torch
import cv2
    
def resize_image(image, max_dimension, multiplier=16):
    original_width, original_height = image.size
    aspect_ratio = original_width / original_height

    if original_width > original_height:
        new_width = min(max_dimension, original_width)
        new_height = round(new_width / aspect_ratio)
    else:
        new_height = min(max_dimension, original_height)
        new_width = round(new_height * aspect_ratio)

    new_width = round(new_width / multiplier) * multiplier
    new_height = round(new_height / multiplier) * multiplier
    resized_image = image.resize((new_width, new_height), Image.LANCZOS)

    return resized_image

def depth_map_prompt(prompt, image_url, controlnet_pipe, controlnet_model, negative_prompt):
  image = load_image(image_url)

  max_dimension = 768
  resized_image = resize_image(image, max_dimension)

  depth_map = controlnet_model(resized_image)

  output = controlnet_pipe(
      prompt,
      depth_map,
      negative_prompt=negative_prompt,
      generator=torch.Generator(device="cpu").manual_seed(2),
      num_inference_steps=20,
  )

  return {"output": output.images[0], "depth_map": depth_map}




controlnet_depth = ControlNetModel.from_pretrained(
    "fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=torch.float16
)

model_id = "runwayml/stable-diffusion-v1-5"
depth_pipe = StableDiffusionControlNetPipeline.from_pretrained(
    model_id,
    controlnet=controlnet_depth,
    torch_dtype=torch.float16,
)

depth_pipe.scheduler = UniPCMultistepScheduler.from_config(depth_pipe.scheduler.config)
depth_pipe.enable_model_cpu_offload()
depth_pipe.enable_xformers_memory_efficient_attention()

loaded_model = MidasDetector.from_pretrained("lllyasviel/ControlNet") # works




def rotate_image(image, rotation):
  rotation = 360 - int(rotation)
  image = image.rotate(rotation, resample=Image.BICUBIC, expand=True)
  return image

def controlnet_function(input_prompt, input_image, input_negative_prompt, input_seed, input_rotate, input_invert):
  pil_image = Image.fromarray(input_image)

  max_dimension = 768
  processed_image = resize_image(pil_image, max_dimension, 32)

  # rotate image
  if input_rotate and int(input_rotate) > 0:
    processed_image = rotate_image(processed_image, int(input_rotate))

  depth_map = loaded_model(processed_image)

  if input_invert:
    depth_map = np.array(depth_map)
    depth_map = 255 - depth_map
    depth_map = Image.fromarray(depth_map)

  generator = torch.Generator(device="cpu").manual_seed(input_seed)

  output = depth_pipe(
      input_prompt,
      depth_map,
      negative_prompt=input_negative_prompt,
      generator=generator,
      num_inference_steps=20,
  )

  return_text = f'''
    prompt: "{input_prompt}"
    seed: {input_seed}
    negative-prompt: "{input_negative_prompt}"
    controlnet: "fusing/stable-diffusion-v1-5-controlnet-depth"
    stable-diffusion: "runwayml/stable-diffusion-v1-5"
    inverted: {input_invert}
  '''

  return [return_text, output.images[0], depth_map]

# import random 
def random_seed():
  return random.randint(0, 99999999999999)

with gr.Blocks() as depth_controlnet_gradio:
  gr.Markdown('''
      # <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> ControlNet + Depthmap 
    ---
  ''')
  with gr.Row():
    with gr.Column():
        gr.Markdown('''
          ## Inputs...
        ''')
        input_prompt = gr.inputs.Textbox(label="text prompt")
        input_image = gr.inputs.Image(label="input image")
        with gr.Accordion(label="options", open=False):
          with gr.Row():
            with gr.Column():
              input_negative_prompt = gr.inputs.Textbox(label="negative prompt")
            with gr.Column():
              input_seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
          with gr.Row():
            with gr.Column():
              input_rotate = gr.Dropdown([0, 90, 180, 270], label="rotate image (for smartphones)")
            with gr.Column():
              input_invert = gr.inputs.Checkbox(label="invert depthmap")
        submit = gr.Button('generate image')

    with gr.Column():
        gr.Markdown('''
          ## Outputs...
        ''')
        output_image = gr.Image(label="output image")
        with gr.Accordion(label="depth map image", open=False):
          depth_map = gr.Image(label="depth map")
        output_text = gr.Textbox(label="output details")

  submit.click(fn=controlnet_function, inputs=[input_prompt, input_image, input_negative_prompt, input_seed, input_rotate, input_invert], outputs=[output_text, output_image, depth_map])

# depth_controlnet_gradio.launch(debug=False)





# ----- Launch Tabs -----------------------------------------------------------------

tabbed_interface = gr.TabbedInterface([new_welcome, artbot_1, advanced_tab, beta, canny_blocks_interface, depth_controlnet_gradio], ["Welcome", "ArtBot", "Advanced", "Beta", "EdgeTrace", "DepthMap"])
# tabbed_interface = gr.TabbedInterface([new_welcome, advanced_tab, beta], ["Artbots", "Advanced", "Beta"])
tabbed_interface.launch()