Spaces:
Running
Running
File size: 3,495 Bytes
e2c48d1 899c524 77fb271 5910f04 b723189 0184aed b723189 0184aed 41b1b4e 5910f04 b723189 77fb271 b723189 77fb271 b723189 78c79c8 d0e1651 78c79c8 0184aed b723189 0184aed b723189 ba05218 b723189 caa7434 b723189 899c524 b723189 2398e1d 899c524 78c79c8 ce805af e2c48d1 0184aed 2398e1d b723189 b06d326 c490fcd 15d93c6 b5a31f2 fc55db6 b06d326 899c524 b06d326 899c524 b5a31f2 afda8c0 b5a31f2 94e7509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import os
import json
import argparse
import operator
import gradio as gr
import torchvision
from typing import Tuple, Dict
from facetorch import FaceAnalyzer
from facetorch.datastruct import ImageData
from omegaconf import OmegaConf
from torch.nn.functional import cosine_similarity
parser = argparse.ArgumentParser(description="App")
parser.add_argument(
"--path-conf",
type=str,
default="config.merged.yml",
help="Path to the config file",
)
args = parser.parse_args()
cfg = OmegaConf.load(args.path_conf)
analyzer = FaceAnalyzer(cfg.analyzer)
def gen_sim_dict_str(response: ImageData, pred_name: str = "verify", index: int = 0)-> str:
if len(response.faces) > 0:
base_emb = response.faces[index].preds[pred_name].logits
sim_dict = {face.indx: cosine_similarity(base_emb, face.preds[pred_name].logits, dim=0).item() for face in response.faces}
sim_dict_sort = dict(sorted(sim_dict.items(), key=operator.itemgetter(1),reverse=True))
sim_dict_sort_str = str(sim_dict_sort)
else:
sim_dict_sort_str = ""
return sim_dict_sort_str
def inference(path_image: str) -> Tuple:
response = analyzer.run(
path_image=path_image,
batch_size=cfg.batch_size,
fix_img_size=cfg.fix_img_size,
return_img_data=cfg.return_img_data,
include_tensors=cfg.include_tensors,
path_output=None,
)
pil_image = torchvision.transforms.functional.to_pil_image(response.img)
fer_dict_str = str({face.indx: face.preds["fer"].label for face in response.faces})
deepfake_dict_str = str({face.indx: face.preds["deepfake"].label for face in response.faces})
response_str = str(response)
sim_dict_str_embed = gen_sim_dict_str(response, pred_name="embed", index=0)
sim_dict_str_verify = gen_sim_dict_str(response, pred_name="verify", index=0)
os.remove(path_image)
out_tuple = (pil_image, fer_dict_str, deepfake_dict_str, sim_dict_str_embed, sim_dict_str_verify, response_str)
return out_tuple
title = "facetorch-app"
description = "Demo of facetorch, a Python library that uses pre-trained deep neural networks for face detection, representation learning, verification, expression recognition, deepfake detection, and 3D alignment. Try selecting one of the example images or upload your own. This work would not be possible without the original work of the researchers and engineers who trained the models (sources and credits can be found in the facetorch repository). Use responsibly."
article = "<p style='text-align: center'><a href='https://github.com/tomas-gajarsky/facetorch' style='text-align:center' target='_blank'>facetorch GitHub repository</a></p>"
demo=gr.Interface(
inference,
[gr.inputs.Image(label="Input", type="filepath")],
[gr.outputs.Image(type="pil", label="Face Detection and 3D Landmarks"),
gr.outputs.Textbox(label="Facial Expression Recognition"),
gr.outputs.Textbox(label="DeepFake Detection"),
gr.outputs.Textbox(label="Cosine similarity of Face Representation Embeddings"),
gr.outputs.Textbox(label="Cosine similarity of Face Verification Embeddings"),
gr.outputs.Textbox(label="Response")],
title=title,
description=description,
article=article,
examples=[["./test5.jpg"], ["./test.jpg"], ["./test4.jpg"], ["./test8.jpg"], ["./test6.jpg"], ["./test3.jpg"], ["./test10.jpg"]],
)
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|