Spaces:
Running
Running
File size: 9,395 Bytes
4717959 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import logging
from typing import List, Dict, Any, Optional
from pathlib import Path
# import torch
from dotenv import load_dotenv
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
from haystack_integrations.components.retrievers.qdrant import QdrantEmbeddingRetriever, QdrantSparseEmbeddingRetriever
from haystack.components.embedders import OpenAIDocumentEmbedder, OpenAITextEmbedder
from haystack.components.builders.prompt_builder import PromptBuilder
from haystack.components.joiners.document_joiner import DocumentJoiner
from haystack.components.preprocessors.document_cleaner import DocumentCleaner
# from haystack.components.rankers.transformers import TransformersRanker
from haystack.components.writers import DocumentWriter
from haystack.components.generators.openai import OpenAIGenerator
from haystack import Pipeline
from haystack.utils import Secret
from haystack import tracing
from haystack.tracing.logging_tracer import LoggingTracer
# Load environment variables
load_dotenv()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING)
logging.getLogger("haystack").setLevel(logging.DEBUG)
tracing.tracer.is_content_tracing_enabled = True # to enable tracing/logging content (inputs/outputs)
tracing.enable_tracing(LoggingTracer(tags_color_strings={"haystack.component.input": "\x1b[1;31m", "haystack.component.name": "\x1b[1;34m"}))
class RAGPipeline:
def __init__(
self,
embedding_model_name: str = "BAAI/bge-en-icl",
llm_model_name: str = "meta-llama/Llama-3.3-70B-Instruct",
qdrant_path: str = None
):
self.embedding_model_name = embedding_model_name
self.llm_model_name = llm_model_name
self.qdrant_path = qdrant_path
self.nebius_api_key = Secret.from_token(os.getenv("NEBIUS_API_KEY"))
if not self.nebius_api_key:
logger.warning("NEBIUS_API_KEY not found in environment variables")
# Initialize document stores and components
self.init_document_store()
self.init_components()
self.build_indexing_pipeline()
self.build_query_pipeline()
def init_document_store(self):
"""Initialize Qdrant document store for both vector and BM25 search"""
# Qdrant store for both vector and BM25 search
self.document_store = QdrantDocumentStore(
path=self.qdrant_path,
embedding_dim=4096, # Dimension for BGE model
recreate_index=False,
on_disk=True,
on_disk_payload=True,
index="ltu_documents",
force_disable_check_same_thread=True,
use_sparse_embeddings=True # Enable BM25 support
)
def init_components(self):
"""Initialize all components needed for the pipelines"""
# Document processing
self.document_cleaner = DocumentCleaner()
# Embedding components
self.document_embedder = OpenAIDocumentEmbedder(
api_base_url="https://api.studio.nebius.com/v1/",
model=self.embedding_model_name,
api_key=self.nebius_api_key,
)
self.text_embedder = OpenAITextEmbedder(
api_base_url="https://api.studio.nebius.com/v1/",
model=self.embedding_model_name,
api_key=self.nebius_api_key,
)
# Retrievers
self.bm25_retriever = QdrantSparseEmbeddingRetriever(
document_store=self.document_store,
top_k=5
)
self.embedding_retriever = QdrantEmbeddingRetriever(
document_store=self.document_store,
top_k=5
)
# Document joiner for combining results
self.document_joiner = DocumentJoiner()
# Ranker for re-ranking combined results
# self.ranker = TransformersRanker(
# model="cross-encoder/ms-marco-MiniLM-L-6-v2",
# top_k=5,
# device="cuda" if self.use_gpu else "cpu"
# )
# LLM components
self.llm = OpenAIGenerator(
api_base_url="https://api.studio.nebius.com/v1/",
model=self.llm_model_name,
api_key=self.nebius_api_key,
generation_kwargs={
"max_tokens": 1024,
"temperature": 0.1,
"top_p": 0.95,
}
)
# Prompt builder
self.prompt_builder = PromptBuilder(
template="""
<s>[INST] You are a helpful assistant that answers questions based on the provided context.
Context:
{% for document in documents %}
{{ document.content }}
{% endfor %}
Question: {{ question }}
Answer the question based only on the provided context. If the context doesn't contain the answer, say "I don't have enough information to answer this question."
Answer: [/INST]
"""
)
def build_indexing_pipeline(self):
"""Build the pipeline for indexing documents"""
self.indexing_pipeline = Pipeline()
self.indexing_pipeline.add_component("document_cleaner", self.document_cleaner)
self.indexing_pipeline.add_component("document_embedder", self.document_embedder)
self.indexing_pipeline.add_component("document_writer", DocumentWriter(document_store=self.document_store))
# Connect components
self.indexing_pipeline.connect("document_cleaner", "document_embedder")
self.indexing_pipeline.connect("document_embedder", "document_writer")
def build_query_pipeline(self):
"""Build the pipeline for querying"""
self.query_pipeline = Pipeline()
# Add components
self.query_pipeline.add_component("text_embedder", self.text_embedder)
# self.query_pipeline.add_component("bm25_retriever", self.bm25_retriever)
self.query_pipeline.add_component("embedding_retriever", self.embedding_retriever)
# self.query_pipeline.add_component("document_joiner", self.document_joiner)
# self.query_pipeline.add_component("ranker", self.ranker)
self.query_pipeline.add_component("prompt_builder", self.prompt_builder)
self.query_pipeline.add_component("llm", self.llm)
# Connect components
self.query_pipeline.connect("text_embedder.embedding", "embedding_retriever.query_embedding")
# self.query_pipeline.connect("bm25_retriever", "document_joiner.documents_1")
# self.query_pipeline.connect("embedding_retriever", "document_joiner.documents_2")
# self.query_pipeline.connect("document_joiner", "ranker")
# self.query_pipeline.connect("ranker", "prompt_builder.documents")
self.query_pipeline.connect("embedding_retriever.documents", "prompt_builder.documents")
self.query_pipeline.connect("prompt_builder.prompt", "llm")
def index_documents(self, documents: List[Dict[str, Any]]):
"""
Index documents in the document store.
Args:
documents: List of documents to index
"""
logger.info(f"Indexing {len(documents)} documents")
try:
self.indexing_pipeline.run(
{"document_cleaner": {"documents": documents}}
)
logger.info("Indexing completed successfully")
except Exception as e:
logger.error(f"Error during indexing: {e}")
def query(self, question: str, top_k: int = 5) -> Dict[str, Any]:
"""
Query the RAG pipeline with a question.
Args:
question: The question to ask
top_k: Number of documents to retrieve
Returns:
Dictionary containing the answer and retrieved documents
"""
logger.info(f"Querying with question: {question}")
try:
# Update top_k for retrievers
self.bm25_retriever.top_k = top_k
self.embedding_retriever.top_k = top_k
# Run the query pipeline
result = self.query_pipeline.run({
"text_embedder": {"text": question},
# "bm25_retriever": {"query": question},
"prompt_builder": {"question": question}
})
# Extract answer and documents
answer = result["llm"]["replies"][0]
# documents = result["embedding_retriever"]["documents"]
return {
"answer": answer,
"documents": [], #documents,
"question": question
}
except Exception as e:
logger.error(f"Error during query: {e}")
return {
"answer": f"An error occurred: {str(e)}",
"documents": [],
"question": question
}
def get_document_count(self) -> int:
"""
Get the number of documents in the document store.
Returns:
Document count
"""
return self.document_store.count_documents() |