File size: 6,624 Bytes
917fe92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import torch

class PoseT(torch.nn.Module):
    
    def __init__(self):
        super().__init__()
    
    def forward(self, pose):

        p1 = pose[..., 0:1]
        p2 = torch.sin(pose[..., 1:2])
        p3 = torch.cos(pose[..., 1:2])
        p4 = pose[..., 2:]

        return torch.cat([p1, p2, p3, p4], dim=-1)


@torch.no_grad()
def noise_loss(model, cond_image, target_image, pose, ts_range, bsz, noise=None):

    mx = ts_range[1]
    mn = ts_range[0]

    pose_layer = PoseT()

    batch = {}
    batch['image_target'] = target_image.repeat(bsz, 1, 1, 1)
    batch['image_cond'] = cond_image.repeat(bsz, 1, 1, 1)
    batch['T'] = pose_layer(pose.detach()).repeat(bsz, 1)

    if noise is not None:
        noise = torch.tensor(noise, dtype=model.dtype, device=model.device)

    loss, _ = model.shared_step(batch, ts=np.arange(mn, mx, (mx-mn) / bsz), noise=noise[:bsz])

    return loss.item()


@torch.no_grad()
def pairwise_loss(pose, model, cond_image, target_image, ts_range, probe_bsz, noise=None):

    theta, azimuth, radius = pose

    pose1 = torch.tensor([[theta, azimuth, radius]], device=model.device, dtype=torch.float32)
    pose2 = torch.tensor([[-theta, np.pi*2-azimuth, -radius]], device=model.device, dtype=torch.float32)
    loss1 = noise_loss(model, cond_image, target_image, pose1, ts_range, probe_bsz, noise=noise)
    loss2 = noise_loss(model, target_image, cond_image, pose2, ts_range, probe_bsz, noise=noise)

    return loss1 + loss2


@torch.no_grad()
def probe_pose(model, cond_image, target_image, ts_range, probe_bsz, theta_range=None, azimuth_range=None, radius_range=None, noise=None):

    eps = 1e-5

    if theta_range is None:
        theta_range = np.arange(start=-np.pi*2/3, stop=np.pi*2/3+eps, step=np.pi/3)
    if azimuth_range is None:
        azimuth_range = np.arange(start=0.0, stop=np.pi*2, step=np.pi/4)
    if radius_range is None:
        radius_range = np.arange(start=0.0, stop=0.0+eps, step=0.1)

    cands = []

    for radius in radius_range:
        for azimuth in azimuth_range:
            for theta in theta_range:

                loss = pairwise_loss([theta, azimuth, radius], model, cond_image, target_image, ts_range, probe_bsz, noise=noise)

                '''convert numpy.float to float'''
                cands.append((loss, [float(theta), float(azimuth), float(radius)]))

    return cands


def create_random_pose():

    theta = np.random.rand() * np.pi - np.pi / 2
    azimuth = np.random.rand() * np.pi * 2
    radius = np.random.rand() - 0.5
    
    return [theta, azimuth, radius]


def get_inv_pose(pose):

    return [-pose[0], np.pi*2 - pose[1], -pose[2]]


def add_pose(pose1, pose2):

    theta = pose1[0] + pose2[0]
    azimuth = pose1[1] + pose2[1]
    azimuth = azimuth % (np.pi*2)

    return [ theta, azimuth, (pose1[2] + pose2[2]) ]


def create_pose_params(pose, device):

    theta = torch.tensor([pose[0]], requires_grad=True, device=device)
    azimuth = torch.tensor([pose[1]], requires_grad=True, device=device)
    radius = torch.tensor([pose[2]], requires_grad=True, device=device)

    return [theta, azimuth, radius]


def find_optimal_poses(model, images, learning_rate, bsz=1, n_iter=1000, init_poses={}, ts_range=[0.02, 0.92], combinations=None, print_n=50, avg_last_n=1):
    
    layer = PoseT()

    num = len(images)

    batch = {}

    pose_params = { i:None for i in range(1, num)}
    pose_trajs = { i:[]  for i in range(1, num) }

    for i in range(1, num):

        if i in init_poses:
            init_pose = init_poses[i]
        else:
            init_pose = create_random_pose()

        pose = create_pose_params(init_pose, model.device)
        pose_params[i] = pose

    if combinations is None:
        combinations = []
        for i in range(0, num):
            for j in range(i+1, num):
                combinations.append((i, j))
                combinations.append((j, i))

    param_list = []
    for i in pose_params:
        param_list += pose_params[i]

    optimizer = torch.optim.SGD(param_list, lr = learning_rate)

    loss_traj = []
    select_indces = set([])
                                
    for iter in range(0, n_iter):

        if print_n > 0 and iter % print_n == 0 and iter > 0:
            print(iter, np.mean(loss_traj[-avg_last_n:]), flush=True)
            for i in range(1, num):
                print(0, i, np.mean(pose_trajs[i][-avg_last_n:], axis=0).tolist())

        '''record poses'''
        for i in select_indces:
            pose = pose_params[i]
            pose_trajs[i].append([pose[0].item(), pose[1].item(), pose[2].item()])

        select_indces = set([])

        conds = []
        targets = []
        rts = []

        choices = [ iter % len(combinations) ] 
        
        if bsz > 1:
            choices = np.random.choice(len(combinations), size=bsz, replace=True)

        for cho in choices:

            i, j = combinations[cho]

            conds.append(images[i])
            targets.append(images[j])
            if i == 0:
                pose = pose_params[j]
                select_indces.add(j)
            
            elif j == 0:
                pose = get_inv_pose(pose_params[i])
                select_indces.add(i)

            else:
                pose0j = pose_params[j]
                posei0 = get_inv_pose(pose_params[i])

                if np.random.rand() < 0.5:
                    posei0 = [a.item() for a in posei0]
                    select_indces.add(j)
                else:
                    pose0j = [b.item() for b in pose0j]
                    select_indces.add(i)

                #pose = [ torch.remainder(a+b+2*np.pi, 2*np.pi) - np.pi for a, b in zip(posei0, pose0j) ]
                pose = [ a+b for a, b in zip(posei0, pose0j) ]

            rts.append(torch.cat(pose)[None, ...])

        batch['image_cond'] = torch.cat(conds, dim=0)
        batch['image_target'] = torch.cat(targets, dim=0)
        batch['T'] = layer(torch.cat(rts, dim=0))
        ts = np.arange(ts_range[0], ts_range[1], (ts_range[1]-ts_range[0]) / len(conds))

        optimizer.zero_grad()
        loss, loss_dict = model.shared_step(batch, ts=ts)
        loss.backward()

        optimizer.step()

        loss_traj.append(loss.item())

    if n_iter > 0:
        result_poses = [ np.mean(pose_trajs[i][-avg_last_n:], axis=0).tolist() for i in range(1, num) ]
        result_loss = np.mean(loss_traj[-avg_last_n:])
    else:
        result_poses = [ init_poses[i] for i in range(1, num) ]
        result_loss = None

    return result_poses, [ init_poses[i] for i in range(1, num) ], result_loss