File size: 989 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch


def add_gradient_noise(
    model: torch.nn.Module,
    iteration: int,
    duration: float = 100,
    eta: float = 1.0,
    scale_factor: float = 0.55,
):
    """Adds noise from a standard normal distribution to the gradients.

    The standard deviation (`sigma`) is controlled
    by the three hyper-parameters below.
    `sigma` goes to zero (no noise) with more iterations.

    Args:
        model: Model.
        iteration: Number of iterations.
        duration: {100, 1000}: Number of durations to control
            the interval of the `sigma` change.
        eta: {0.01, 0.3, 1.0}: The magnitude of `sigma`.
        scale_factor: {0.55}: The scale of `sigma`.
    """
    interval = (iteration // duration) + 1
    sigma = eta / interval ** scale_factor
    for param in model.parameters():
        if param.grad is not None:
            _shape = param.grad.size()
            noise = sigma * torch.randn(_shape).to(param.device)
            param.grad += noise