File size: 25,365 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
from distutils.version import LooseVersion
from functools import reduce
from itertools import permutations
from typing import Dict
from typing import Optional
from typing import Tuple
import torch
from torch_complex.tensor import ComplexTensor
from typeguard import check_argument_types
from espnet2.enh.decoder.abs_decoder import AbsDecoder
from espnet2.enh.encoder.abs_encoder import AbsEncoder
from espnet2.enh.encoder.conv_encoder import ConvEncoder
from espnet2.enh.separator.abs_separator import AbsSeparator
from espnet2.torch_utils.device_funcs import force_gatherable
from espnet2.train.abs_espnet_model import AbsESPnetModel
is_torch_1_3_plus = LooseVersion(torch.__version__) >= LooseVersion("1.3.0")
ALL_LOSS_TYPES = (
# mse_loss(predicted_mask, target_label)
"mask_mse",
# mse_loss(enhanced_magnitude_spectrum, target_magnitude_spectrum)
"magnitude",
# mse_loss(enhanced_complex_spectrum, target_complex_spectrum)
"spectrum",
# log_mse_loss(enhanced_complex_spectrum, target_complex_spectrum)
"spectrum_log",
# si_snr(enhanced_waveform, target_waveform)
"si_snr",
)
EPS = torch.finfo(torch.get_default_dtype()).eps
class ESPnetEnhancementModel(AbsESPnetModel):
"""Speech enhancement or separation Frontend model"""
def __init__(
self,
encoder: AbsEncoder,
separator: AbsSeparator,
decoder: AbsDecoder,
stft_consistency: bool = False,
loss_type: str = "mask_mse",
mask_type: Optional[str] = None,
):
assert check_argument_types()
super().__init__()
self.encoder = encoder
self.separator = separator
self.decoder = decoder
self.num_spk = separator.num_spk
self.num_noise_type = getattr(self.separator, "num_noise_type", 1)
if loss_type != "si_snr" and isinstance(encoder, ConvEncoder):
raise TypeError(f"{loss_type} is not supported with {type(ConvEncoder)}")
# get mask type for TF-domain models (only used when loss_type="mask_*")
self.mask_type = mask_type.upper() if mask_type else None
# get loss type for model training
self.loss_type = loss_type
# whether to compute the TF-domain loss while enforcing STFT consistency
self.stft_consistency = stft_consistency
if stft_consistency and loss_type in ["mask_mse", "si_snr"]:
raise ValueError(
f"stft_consistency will not work when '{loss_type}' loss is used"
)
assert self.loss_type in ALL_LOSS_TYPES, self.loss_type
# for multi-channel signal
self.ref_channel = getattr(self.separator, "ref_channel", -1)
@staticmethod
def _create_mask_label(mix_spec, ref_spec, mask_type="IAM"):
"""Create mask label.
Args:
mix_spec: ComplexTensor(B, T, F)
ref_spec: List[ComplexTensor(B, T, F), ...]
mask_type: str
Returns:
labels: List[Tensor(B, T, F), ...] or List[ComplexTensor(B, T, F), ...]
"""
# Must be upper case
assert mask_type in [
"IBM",
"IRM",
"IAM",
"PSM",
"NPSM",
"PSM^2",
], f"mask type {mask_type} not supported"
mask_label = []
for r in ref_spec:
mask = None
if mask_type == "IBM":
flags = [abs(r) >= abs(n) for n in ref_spec]
mask = reduce(lambda x, y: x * y, flags)
mask = mask.int()
elif mask_type == "IRM":
# TODO(Wangyou): need to fix this,
# as noise referecens are provided separately
mask = abs(r) / (sum(([abs(n) for n in ref_spec])) + EPS)
elif mask_type == "IAM":
mask = abs(r) / (abs(mix_spec) + EPS)
mask = mask.clamp(min=0, max=1)
elif mask_type == "PSM" or mask_type == "NPSM":
phase_r = r / (abs(r) + EPS)
phase_mix = mix_spec / (abs(mix_spec) + EPS)
# cos(a - b) = cos(a)*cos(b) + sin(a)*sin(b)
cos_theta = (
phase_r.real * phase_mix.real + phase_r.imag * phase_mix.imag
)
mask = (abs(r) / (abs(mix_spec) + EPS)) * cos_theta
mask = (
mask.clamp(min=0, max=1)
if mask_type == "NPSM"
else mask.clamp(min=-1, max=1)
)
elif mask_type == "PSM^2":
# This is for training beamforming masks
phase_r = r / (abs(r) + EPS)
phase_mix = mix_spec / (abs(mix_spec) + EPS)
# cos(a - b) = cos(a)*cos(b) + sin(a)*sin(b)
cos_theta = (
phase_r.real * phase_mix.real + phase_r.imag * phase_mix.imag
)
mask = (abs(r).pow(2) / (abs(mix_spec).pow(2) + EPS)) * cos_theta
mask = mask.clamp(min=-1, max=1)
assert mask is not None, f"mask type {mask_type} not supported"
mask_label.append(mask)
return mask_label
def forward(
self,
speech_mix: torch.Tensor,
speech_mix_lengths: torch.Tensor = None,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech_mix: (Batch, samples) or (Batch, samples, channels)
speech_ref: (Batch, num_speaker, samples)
or (Batch, num_speaker, samples, channels)
speech_mix_lengths: (Batch,), default None for chunk interator,
because the chunk-iterator does not have the
speech_lengths returned. see in
espnet2/iterators/chunk_iter_factory.py
"""
# clean speech signal of each speaker
speech_ref = [
kwargs["speech_ref{}".format(spk + 1)] for spk in range(self.num_spk)
]
# (Batch, num_speaker, samples) or (Batch, num_speaker, samples, channels)
speech_ref = torch.stack(speech_ref, dim=1)
if "noise_ref1" in kwargs:
# noise signal (optional, required when using
# frontend models with beamformering)
noise_ref = [
kwargs["noise_ref{}".format(n + 1)] for n in range(self.num_noise_type)
]
# (Batch, num_noise_type, samples) or
# (Batch, num_noise_type, samples, channels)
noise_ref = torch.stack(noise_ref, dim=1)
else:
noise_ref = None
# dereverberated (noisy) signal
# (optional, only used for frontend models with WPE)
if "dereverb_ref1" in kwargs:
# noise signal (optional, required when using
# frontend models with beamformering)
dereverb_speech_ref = [
kwargs["dereverb_ref{}".format(n + 1)]
for n in range(self.num_spk)
if "dereverb_ref{}".format(n + 1) in kwargs
]
assert len(dereverb_speech_ref) in (1, self.num_spk), len(
dereverb_speech_ref
)
# (Batch, N, samples) or (Batch, N, samples, channels)
dereverb_speech_ref = torch.stack(dereverb_speech_ref, dim=1)
else:
dereverb_speech_ref = None
batch_size = speech_mix.shape[0]
speech_lengths = (
speech_mix_lengths
if speech_mix_lengths is not None
else torch.ones(batch_size).int().fill_(speech_mix.shape[1])
)
assert speech_lengths.dim() == 1, speech_lengths.shape
# Check that batch_size is unified
assert speech_mix.shape[0] == speech_ref.shape[0] == speech_lengths.shape[0], (
speech_mix.shape,
speech_ref.shape,
speech_lengths.shape,
)
# for data-parallel
speech_ref = speech_ref[:, :, : speech_lengths.max()]
speech_mix = speech_mix[:, : speech_lengths.max()]
loss, speech_pre, others, out_lengths, perm = self._compute_loss(
speech_mix,
speech_lengths,
speech_ref,
dereverb_speech_ref=dereverb_speech_ref,
noise_ref=noise_ref,
)
# add stats for logging
if self.loss_type != "si_snr":
if self.training:
si_snr = None
else:
speech_pre = [self.decoder(ps, speech_lengths)[0] for ps in speech_pre]
speech_ref = torch.unbind(speech_ref, dim=1)
if speech_ref[0].dim() == 3:
# For si_snr loss, only select one channel as the reference
speech_ref = [sr[..., self.ref_channel] for sr in speech_ref]
# compute si-snr loss
si_snr_loss, perm = self._permutation_loss(
speech_ref, speech_pre, self.si_snr_loss, perm=perm
)
si_snr = -si_snr_loss.detach()
stats = dict(
si_snr=si_snr,
loss=loss.detach(),
)
else:
stats = dict(si_snr=-loss.detach(), loss=loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def _compute_loss(
self,
speech_mix,
speech_lengths,
speech_ref,
dereverb_speech_ref=None,
noise_ref=None,
cal_loss=True,
):
"""Compute loss according to self.loss_type.
Args:
speech_mix: (Batch, samples) or (Batch, samples, channels)
speech_lengths: (Batch,), default None for chunk interator,
because the chunk-iterator does not have the
speech_lengths returned. see in
espnet2/iterators/chunk_iter_factory.py
speech_ref: (Batch, num_speaker, samples)
or (Batch, num_speaker, samples, channels)
dereverb_speech_ref: (Batch, N, samples)
or (Batch, num_speaker, samples, channels)
noise_ref: (Batch, num_noise_type, samples)
or (Batch, num_speaker, samples, channels)
cal_loss: whether to calculate enh loss, defualt is True
Returns:
loss: (torch.Tensor) speech enhancement loss
speech_pre: (List[torch.Tensor] or List[ComplexTensor])
enhanced speech or spectrum(s)
others: (OrderedDict) estimated masks or None
output_lengths: (Batch,)
perm: () best permutation
"""
feature_mix, flens = self.encoder(speech_mix, speech_lengths)
feature_pre, flens, others = self.separator(feature_mix, flens)
if self.loss_type != "si_snr":
spectrum_mix = feature_mix
spectrum_pre = feature_pre
# predict separated speech and masks
if self.stft_consistency:
# pseudo STFT -> time-domain -> STFT (compute loss)
tmp_t_domain = [
self.decoder(sp, speech_lengths)[0] for sp in spectrum_pre
]
spectrum_pre = [
self.encoder(sp, speech_lengths)[0] for sp in tmp_t_domain
]
pass
if spectrum_pre is not None and not isinstance(
spectrum_pre[0], ComplexTensor
):
spectrum_pre = [
ComplexTensor(*torch.unbind(sp, dim=-1)) for sp in spectrum_pre
]
if not cal_loss:
loss, perm = None, None
return loss, spectrum_pre, others, flens, perm
# prepare reference speech and reference spectrum
speech_ref = torch.unbind(speech_ref, dim=1)
# List[ComplexTensor(Batch, T, F)] or List[ComplexTensor(Batch, T, C, F)]
spectrum_ref = [self.encoder(sr, speech_lengths)[0] for sr in speech_ref]
# compute TF masking loss
if self.loss_type == "magnitude":
# compute loss on magnitude spectrum
assert spectrum_pre is not None
magnitude_pre = [abs(ps + 1e-15) for ps in spectrum_pre]
if spectrum_ref[0].dim() > magnitude_pre[0].dim():
# only select one channel as the reference
magnitude_ref = [
abs(sr[..., self.ref_channel, :]) for sr in spectrum_ref
]
else:
magnitude_ref = [abs(sr) for sr in spectrum_ref]
tf_loss, perm = self._permutation_loss(
magnitude_ref, magnitude_pre, self.tf_mse_loss
)
elif self.loss_type.startswith("spectrum"):
# compute loss on complex spectrum
if self.loss_type == "spectrum":
loss_func = self.tf_mse_loss
elif self.loss_type == "spectrum_log":
loss_func = self.tf_log_mse_loss
else:
raise ValueError("Unsupported loss type: %s" % self.loss_type)
assert spectrum_pre is not None
if spectrum_ref[0].dim() > spectrum_pre[0].dim():
# only select one channel as the reference
spectrum_ref = [sr[..., self.ref_channel, :] for sr in spectrum_ref]
tf_loss, perm = self._permutation_loss(
spectrum_ref, spectrum_pre, loss_func
)
elif self.loss_type.startswith("mask"):
if self.loss_type == "mask_mse":
loss_func = self.tf_mse_loss
else:
raise ValueError("Unsupported loss type: %s" % self.loss_type)
assert others is not None
mask_pre_ = [
others["mask_spk{}".format(spk + 1)] for spk in range(self.num_spk)
]
# prepare ideal masks
mask_ref = self._create_mask_label(
spectrum_mix, spectrum_ref, mask_type=self.mask_type
)
# compute TF masking loss
tf_loss, perm = self._permutation_loss(mask_ref, mask_pre_, loss_func)
if "mask_dereverb1" in others:
if dereverb_speech_ref is None:
raise ValueError(
"No dereverberated reference for training!\n"
'Please specify "--use_dereverb_ref true" in run.sh'
)
mask_wpe_pre = [
others["mask_dereverb{}".format(spk + 1)]
for spk in range(self.num_spk)
if "mask_dereverb{}".format(spk + 1) in others
]
assert len(mask_wpe_pre) == dereverb_speech_ref.size(1), (
len(mask_wpe_pre),
dereverb_speech_ref.size(1),
)
dereverb_speech_ref = torch.unbind(dereverb_speech_ref, dim=1)
dereverb_spectrum_ref = [
self.encoder(dr, speech_lengths)[0]
for dr in dereverb_speech_ref
]
dereverb_mask_ref = self._create_mask_label(
spectrum_mix, dereverb_spectrum_ref, mask_type=self.mask_type
)
tf_dereverb_loss, perm_d = self._permutation_loss(
dereverb_mask_ref, mask_wpe_pre, loss_func
)
tf_loss = tf_loss + tf_dereverb_loss
if "mask_noise1" in others:
if noise_ref is None:
raise ValueError(
"No noise reference for training!\n"
'Please specify "--use_noise_ref true" in run.sh'
)
noise_ref = torch.unbind(noise_ref, dim=1)
noise_spectrum_ref = [
self.encoder(nr, speech_lengths)[0] for nr in noise_ref
]
noise_mask_ref = self._create_mask_label(
spectrum_mix, noise_spectrum_ref, mask_type=self.mask_type
)
mask_noise_pre = [
others["mask_noise{}".format(n + 1)]
for n in range(self.num_noise_type)
]
tf_noise_loss, perm_n = self._permutation_loss(
noise_mask_ref, mask_noise_pre, loss_func
)
tf_loss = tf_loss + tf_noise_loss
else:
raise ValueError("Unsupported loss type: %s" % self.loss_type)
loss = tf_loss
return loss, spectrum_pre, others, flens, perm
else:
speech_pre = [self.decoder(ps, speech_lengths)[0] for ps in feature_pre]
if not cal_loss:
loss, perm = None, None
return loss, speech_pre, None, speech_lengths, perm
# speech_pre: list[(batch, sample)]
assert speech_pre[0].dim() == 2, speech_pre[0].dim()
if speech_ref.dim() == 4:
# For si_snr loss of multi-channel input,
# only select one channel as the reference
speech_ref = speech_ref[..., self.ref_channel]
speech_ref = torch.unbind(speech_ref, dim=1)
# compute si-snr loss
si_snr_loss, perm = self._permutation_loss(
speech_ref, speech_pre, self.si_snr_loss_zeromean
)
loss = si_snr_loss
return loss, speech_pre, None, speech_lengths, perm
@staticmethod
def tf_mse_loss(ref, inf):
"""time-frequency MSE loss.
Args:
ref: (Batch, T, F) or (Batch, T, C, F)
inf: (Batch, T, F) or (Batch, T, C, F)
Returns:
loss: (Batch,)
"""
assert ref.shape == inf.shape, (ref.shape, inf.shape)
if not is_torch_1_3_plus:
# in case of binary masks
ref = ref.type(inf.dtype)
diff = ref - inf
if isinstance(diff, ComplexTensor):
mseloss = diff.real ** 2 + diff.imag ** 2
else:
mseloss = diff ** 2
if ref.dim() == 3:
mseloss = mseloss.mean(dim=[1, 2])
elif ref.dim() == 4:
mseloss = mseloss.mean(dim=[1, 2, 3])
else:
raise ValueError(
"Invalid input shape: ref={}, inf={}".format(ref.shape, inf.shape)
)
return mseloss
@staticmethod
def tf_log_mse_loss(ref, inf):
"""time-frequency log-MSE loss.
Args:
ref: (Batch, T, F) or (Batch, T, C, F)
inf: (Batch, T, F) or (Batch, T, C, F)
Returns:
loss: (Batch,)
"""
assert ref.shape == inf.shape, (ref.shape, inf.shape)
if not is_torch_1_3_plus:
# in case of binary masks
ref = ref.type(inf.dtype)
diff = ref - inf
if isinstance(diff, ComplexTensor):
log_mse_loss = diff.real ** 2 + diff.imag ** 2
else:
log_mse_loss = diff ** 2
if ref.dim() == 3:
log_mse_loss = torch.log10(log_mse_loss.sum(dim=[1, 2])) * 10
elif ref.dim() == 4:
log_mse_loss = torch.log10(log_mse_loss.sum(dim=[1, 2, 3])) * 10
else:
raise ValueError(
"Invalid input shape: ref={}, inf={}".format(ref.shape, inf.shape)
)
return log_mse_loss
@staticmethod
def tf_l1_loss(ref, inf):
"""time-frequency L1 loss.
Args:
ref: (Batch, T, F) or (Batch, T, C, F)
inf: (Batch, T, F) or (Batch, T, C, F)
Returns:
loss: (Batch,)
"""
assert ref.shape == inf.shape, (ref.shape, inf.shape)
if not is_torch_1_3_plus:
# in case of binary masks
ref = ref.type(inf.dtype)
if isinstance(inf, ComplexTensor):
l1loss = abs(ref - inf + EPS)
else:
l1loss = abs(ref - inf)
if ref.dim() == 3:
l1loss = l1loss.mean(dim=[1, 2])
elif ref.dim() == 4:
l1loss = l1loss.mean(dim=[1, 2, 3])
else:
raise ValueError(
"Invalid input shape: ref={}, inf={}".format(ref.shape, inf.shape)
)
return l1loss
@staticmethod
def si_snr_loss(ref, inf):
"""SI-SNR loss
Args:
ref: (Batch, samples)
inf: (Batch, samples)
Returns:
loss: (Batch,)
"""
ref = ref / torch.norm(ref, p=2, dim=1, keepdim=True)
inf = inf / torch.norm(inf, p=2, dim=1, keepdim=True)
s_target = (ref * inf).sum(dim=1, keepdims=True) * ref
e_noise = inf - s_target
si_snr = 20 * (
torch.log10(torch.norm(s_target, p=2, dim=1).clamp(min=EPS))
- torch.log10(torch.norm(e_noise, p=2, dim=1).clamp(min=EPS))
)
return -si_snr
@staticmethod
def si_snr_loss_zeromean(ref, inf):
"""SI-SNR loss with zero-mean in pre-processing.
Args:
ref: (Batch, samples)
inf: (Batch, samples)
Returns:
loss: (Batch,)
"""
assert ref.size() == inf.size()
B, T = ref.size()
# mask padding position along T
# Step 1. Zero-mean norm
mean_target = torch.sum(ref, dim=1, keepdim=True) / T
mean_estimate = torch.sum(inf, dim=1, keepdim=True) / T
zero_mean_target = ref - mean_target
zero_mean_estimate = inf - mean_estimate
# Step 2. SI-SNR with order
# reshape to use broadcast
s_target = zero_mean_target # [B, T]
s_estimate = zero_mean_estimate # [B, T]
# s_target = <s', s>s / ||s||^2
pair_wise_dot = torch.sum(s_estimate * s_target, dim=1, keepdim=True) # [B, 1]
s_target_energy = torch.sum(s_target ** 2, dim=1, keepdim=True) + EPS # [B, 1]
pair_wise_proj = pair_wise_dot * s_target / s_target_energy # [B, T]
# e_noise = s' - s_target
e_noise = s_estimate - pair_wise_proj # [B, T]
# SI-SNR = 10 * log_10(||s_target||^2 / ||e_noise||^2)
pair_wise_si_snr = torch.sum(pair_wise_proj ** 2, dim=1) / (
torch.sum(e_noise ** 2, dim=1) + EPS
)
# print('pair_si_snr',pair_wise_si_snr[0,:])
pair_wise_si_snr = 10 * torch.log10(pair_wise_si_snr + EPS) # [B]
# print(pair_wise_si_snr)
return -1 * pair_wise_si_snr
@staticmethod
def _permutation_loss(ref, inf, criterion, perm=None):
"""The basic permutation loss function.
Args:
ref (List[torch.Tensor]): [(batch, ...), ...] x n_spk
inf (List[torch.Tensor]): [(batch, ...), ...]
criterion (function): Loss function
perm (torch.Tensor): specified permutation (batch, num_spk)
Returns:
loss (torch.Tensor): minimum loss with the best permutation (batch)
perm (torch.Tensor): permutation for inf (batch, num_spk)
e.g. tensor([[1, 0, 2], [0, 1, 2]])
"""
assert len(ref) == len(inf), (len(ref), len(inf))
num_spk = len(ref)
def pair_loss(permutation):
return sum(
[criterion(ref[s], inf[t]) for s, t in enumerate(permutation)]
) / len(permutation)
if perm is None:
device = ref[0].device
all_permutations = list(permutations(range(num_spk)))
losses = torch.stack([pair_loss(p) for p in all_permutations], dim=1)
loss, perm = torch.min(losses, dim=1)
perm = torch.index_select(
torch.tensor(all_permutations, device=device, dtype=torch.long),
0,
perm,
)
else:
loss = torch.tensor(
[
torch.tensor(
[
criterion(
ref[s][batch].unsqueeze(0), inf[t][batch].unsqueeze(0)
)
for s, t in enumerate(p)
]
).mean()
for batch, p in enumerate(perm)
]
)
return loss.mean(), perm
def collect_feats(
self, speech_mix: torch.Tensor, speech_mix_lengths: torch.Tensor, **kwargs
) -> Dict[str, torch.Tensor]:
# for data-parallel
speech_mix = speech_mix[:, : speech_mix_lengths.max()]
feats, feats_lengths = speech_mix, speech_mix_lengths
return {"feats": feats, "feats_lengths": feats_lengths}
|