File size: 11,062 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import logging
import six

import chainer
import chainer.functions as F
import chainer.links as L
import numpy as np

from chainer import cuda

from espnet.nets.chainer_backend.nets_utils import _subsamplex
from espnet.nets.e2e_asr_common import get_vgg2l_odim


# TODO(watanabe) explanation of BLSTMP
class RNNP(chainer.Chain):
    """RNN with projection layer module.

    Args:
        idim (int): Dimension of inputs.
        elayers (int): Number of encoder layers.
        cdim (int): Number of rnn units. (resulted in cdim * 2 if bidirectional)
        hdim (int): Number of projection units.
        subsample (np.ndarray): List to use sabsample the input array.
        dropout (float): Dropout rate.
        typ (str): The RNN type.

    """

    def __init__(self, idim, elayers, cdim, hdim, subsample, dropout, typ="blstm"):
        super(RNNP, self).__init__()
        bidir = typ[0] == "b"
        if bidir:
            rnn = L.NStepBiLSTM if "lstm" in typ else L.NStepBiGRU
        else:
            rnn = L.NStepLSTM if "lstm" in typ else L.NStepGRU
        rnn_label = "birnn" if bidir else "rnn"
        with self.init_scope():
            for i in six.moves.range(elayers):
                if i == 0:
                    inputdim = idim
                else:
                    inputdim = hdim
                _cdim = 2 * cdim if bidir else cdim
                # bottleneck layer to merge
                setattr(
                    self, "{}{:d}".format(rnn_label, i), rnn(1, inputdim, cdim, dropout)
                )
                setattr(self, "bt%d" % i, L.Linear(_cdim, hdim))

        self.elayers = elayers
        self.rnn_label = rnn_label
        self.cdim = cdim
        self.subsample = subsample
        self.typ = typ
        self.bidir = bidir

    def __call__(self, xs, ilens):
        """RNNP forward.

        Args:
            xs (chainer.Variable): Batch of padded charactor ids. (B, Tmax)
            ilens (chainer.Variable): Batch of length of each input batch. (B,)

        Returns:
            xs (chainer.Variable):subsampled vector of xs.
            chainer.Variable: Subsampled vector of ilens.

        """
        logging.info(self.__class__.__name__ + " input lengths: " + str(ilens))

        for layer in six.moves.range(self.elayers):
            if "lstm" in self.typ:
                _, _, ys = self[self.rnn_label + str(layer)](None, None, xs)
            else:
                _, ys = self[self.rnn_label + str(layer)](None, xs)
            # ys: utt list of frame x cdim x 2 (2: means bidirectional)
            # TODO(watanabe) replace subsample and FC layer with CNN
            ys, ilens = _subsamplex(ys, self.subsample[layer + 1])
            # (sum _utt frame_utt) x dim
            ys = self["bt" + str(layer)](F.vstack(ys))
            xs = F.split_axis(ys, np.cumsum(ilens[:-1]), axis=0)

        # final tanh operation
        xs = F.split_axis(F.tanh(F.vstack(xs)), np.cumsum(ilens[:-1]), axis=0)

        # 1 utterance case, it becomes an array, so need to make a utt tuple
        if not isinstance(xs, tuple):
            xs = [xs]

        return xs, ilens  # x: utt list of frame x dim


class RNN(chainer.Chain):
    """RNN Module.

    Args:
        idim (int): Dimension of the imput.
        elayers (int): Number of encoder layers.
        cdim (int): Number of rnn units.
        hdim (int): Number of projection units.
        dropout (float): Dropout rate.
        typ (str): Rnn type.

    """

    def __init__(self, idim, elayers, cdim, hdim, dropout, typ="lstm"):
        super(RNN, self).__init__()
        bidir = typ[0] == "b"
        if bidir:
            rnn = L.NStepBiLSTM if "lstm" in typ else L.NStepBiGRU
        else:
            rnn = L.NStepLSTM if "lstm" in typ else L.NStepGRU
        _cdim = 2 * cdim if bidir else cdim
        with self.init_scope():
            self.nbrnn = rnn(elayers, idim, cdim, dropout)
            self.l_last = L.Linear(_cdim, hdim)
        self.typ = typ
        self.bidir = bidir

    def __call__(self, xs, ilens):
        """BRNN forward propagation.

        Args:
            xs (chainer.Variable): Batch of padded charactor ids. (B, Tmax)
            ilens (chainer.Variable): Batch of length of each input batch. (B,)

        Returns:
            tuple(chainer.Variable): Tuple of `chainer.Variable` objects.
            chainer.Variable: `ilens` .

        """
        logging.info(self.__class__.__name__ + " input lengths: " + str(ilens))
        # need to move ilens to cpu
        ilens = cuda.to_cpu(ilens)

        if "lstm" in self.typ:
            _, _, ys = self.nbrnn(None, None, xs)
        else:
            _, ys = self.nbrnn(None, xs)
        ys = self.l_last(F.vstack(ys))  # (sum _utt frame_utt) x dim
        xs = F.split_axis(ys, np.cumsum(ilens[:-1]), axis=0)

        # final tanh operation
        xs = F.split_axis(F.tanh(F.vstack(xs)), np.cumsum(ilens[:-1]), axis=0)

        # 1 utterance case, it becomes an array, so need to make a utt tuple
        if not isinstance(xs, tuple):
            xs = [xs]

        return xs, ilens  # x: utt list of frame x dim


# TODO(watanabe) explanation of VGG2L, VGG2B (Block) might be better
class VGG2L(chainer.Chain):
    """VGG motibated cnn layers.

    Args:
        in_channel (int): Number of channels.

    """

    def __init__(self, in_channel=1):
        super(VGG2L, self).__init__()
        with self.init_scope():
            # CNN layer (VGG motivated)
            self.conv1_1 = L.Convolution2D(in_channel, 64, 3, stride=1, pad=1)
            self.conv1_2 = L.Convolution2D(64, 64, 3, stride=1, pad=1)
            self.conv2_1 = L.Convolution2D(64, 128, 3, stride=1, pad=1)
            self.conv2_2 = L.Convolution2D(128, 128, 3, stride=1, pad=1)

        self.in_channel = in_channel

    def __call__(self, xs, ilens):
        """VGG2L forward propagation.

        Args:
            xs (chainer.Variable): Batch of padded charactor ids. (B, Tmax)
            ilens (chainer.Variable): Batch of length of each features. (B,)

        Returns:
            chainer.Variable: Subsampled vector of xs.
            chainer.Variable: Subsampled vector of ilens.

        """
        logging.info(self.__class__.__name__ + " input lengths: " + str(ilens))

        # x: utt x frame x dim
        xs = F.pad_sequence(xs)

        # x: utt x 1 (input channel num) x frame x dim
        xs = F.swapaxes(
            xs.reshape(
                xs.shape[0],
                xs.shape[1],
                self.in_channel,
                xs.shape[2] // self.in_channel,
            ),
            1,
            2,
        )

        xs = F.relu(self.conv1_1(xs))
        xs = F.relu(self.conv1_2(xs))
        xs = F.max_pooling_2d(xs, 2, stride=2)

        xs = F.relu(self.conv2_1(xs))
        xs = F.relu(self.conv2_2(xs))
        xs = F.max_pooling_2d(xs, 2, stride=2)

        # change ilens accordingly
        ilens = self.xp.array(
            self.xp.ceil(self.xp.array(ilens, dtype=np.float32) / 2), dtype=np.int32
        )
        ilens = self.xp.array(
            self.xp.ceil(self.xp.array(ilens, dtype=np.float32) / 2), dtype=np.int32
        )

        # x: utt_list of frame (remove zeropaded frames) x (input channel num x dim)
        xs = F.swapaxes(xs, 1, 2)
        xs = xs.reshape(xs.shape[0], xs.shape[1], xs.shape[2] * xs.shape[3])
        xs = [xs[i, : ilens[i], :] for i in range(len(ilens))]

        return xs, ilens


class Encoder(chainer.Chain):
    """Encoder network class.

    Args:
        etype (str): Type of encoder network.
        idim (int): Number of dimensions of encoder network.
        elayers (int): Number of layers of encoder network.
        eunits (int): Number of lstm units of encoder network.
        eprojs (int): Number of projection units of encoder network.
        subsample (np.array): Subsampling number. e.g. 1_2_2_2_1
        dropout (float): Dropout rate.

    """

    def __init__(
        self, etype, idim, elayers, eunits, eprojs, subsample, dropout, in_channel=1
    ):
        super(Encoder, self).__init__()
        typ = etype.lstrip("vgg").rstrip("p")
        if typ not in ["lstm", "gru", "blstm", "bgru"]:
            logging.error("Error: need to specify an appropriate encoder architecture")
        with self.init_scope():
            if etype.startswith("vgg"):
                if etype[-1] == "p":
                    self.enc = chainer.Sequential(
                        VGG2L(in_channel),
                        RNNP(
                            get_vgg2l_odim(idim, in_channel=in_channel),
                            elayers,
                            eunits,
                            eprojs,
                            subsample,
                            dropout,
                            typ=typ,
                        ),
                    )
                    logging.info("Use CNN-VGG + " + typ.upper() + "P for encoder")
                else:
                    self.enc = chainer.Sequential(
                        VGG2L(in_channel),
                        RNN(
                            get_vgg2l_odim(idim, in_channel=in_channel),
                            elayers,
                            eunits,
                            eprojs,
                            dropout,
                            typ=typ,
                        ),
                    )
                    logging.info("Use CNN-VGG + " + typ.upper() + " for encoder")
                self.conv_subsampling_factor = 4
            else:
                if etype[-1] == "p":
                    self.enc = chainer.Sequential(
                        RNNP(idim, elayers, eunits, eprojs, subsample, dropout, typ=typ)
                    )
                    logging.info(
                        typ.upper() + " with every-layer projection for encoder"
                    )
                else:
                    self.enc = chainer.Sequential(
                        RNN(idim, elayers, eunits, eprojs, dropout, typ=typ)
                    )
                    logging.info(typ.upper() + " without projection for encoder")
                self.conv_subsampling_factor = 1

    def __call__(self, xs, ilens):
        """Encoder forward.

        Args:
            xs (chainer.Variable): Batch of padded charactor ids. (B, Tmax)
            ilens (chainer.variable): Batch of length of each features. (B,)

        Returns:
            chainer.Variable: Output of the encoder.
            chainer.Variable: (Subsampled) vector of ilens.

        """
        xs, ilens = self.enc(xs, ilens)

        return xs, ilens


def encoder_for(args, idim, subsample):
    """Return the Encoder module.

    Args:
        idim (int): Dimension of input array.
        subsample (numpy.array): Subsample number. egs).1_2_2_2_1

    Return
        chainer.nn.Module: Encoder module.

    """
    return Encoder(
        args.etype,
        idim,
        args.elayers,
        args.eunits,
        args.eprojs,
        subsample,
        args.dropout_rate,
    )