File size: 9,423 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import chainer
import chainer.functions as F
import chainer.links as L

import numpy as np


# dot product based attention
class AttDot(chainer.Chain):
    """Compute attention based on dot product.

    Args:
        eprojs (int | None): Dimension of input vectors from encoder.
        dunits (int | None): Dimension of input vectors for decoder.
        att_dim (int): Dimension of input vectors for attention.

    """

    def __init__(self, eprojs, dunits, att_dim):
        super(AttDot, self).__init__()
        with self.init_scope():
            self.mlp_enc = L.Linear(eprojs, att_dim)
            self.mlp_dec = L.Linear(dunits, att_dim)

        self.dunits = dunits
        self.eprojs = eprojs
        self.att_dim = att_dim
        self.h_length = None
        self.enc_h = None
        self.pre_compute_enc_h = None

    def reset(self):
        """Reset states."""
        self.h_length = None
        self.enc_h = None
        self.pre_compute_enc_h = None

    def __call__(self, enc_hs, dec_z, att_prev, scaling=2.0):
        """Compute AttDot forward layer.

        Args:
            enc_hs (chainer.Variable | N-dimensional array):
                Input variable from encoder.
            dec_z (chainer.Variable | N-dimensional array): Input variable of decoder.
            scaling (float): Scaling weight to make attention sharp.

        Returns:
            chainer.Variable: Weighted sum over flames.
            chainer.Variable: Attention weight.

        """
        batch = len(enc_hs)
        # pre-compute all h outside the decoder loop
        if self.pre_compute_enc_h is None:
            self.enc_h = F.pad_sequence(enc_hs)  # utt x frame x hdim
            self.h_length = self.enc_h.shape[1]
            # utt x frame x att_dim
            self.pre_compute_enc_h = F.tanh(self.mlp_enc(self.enc_h, n_batch_axes=2))

        if dec_z is None:
            dec_z = chainer.Variable(
                self.xp.zeros((batch, self.dunits), dtype=np.float32)
            )
        else:
            dec_z = dec_z.reshape(batch, self.dunits)

        # <phi (h_t), psi (s)> for all t
        u = F.broadcast_to(
            F.expand_dims(F.tanh(self.mlp_dec(dec_z)), 1), self.pre_compute_enc_h.shape
        )
        e = F.sum(self.pre_compute_enc_h * u, axis=2)  # utt x frame
        # Applying a minus-large-number filter
        # to make a probability value zero for a padded area
        # simply degrades the performance, and I gave up this implementation
        # Apply a scaling to make an attention sharp
        w = F.softmax(scaling * e)
        # weighted sum over flames
        # utt x hdim
        c = F.sum(
            self.enc_h * F.broadcast_to(F.expand_dims(w, 2), self.enc_h.shape), axis=1
        )

        return c, w


# location based attention
class AttLoc(chainer.Chain):
    """Compute location-based attention.

    Args:
        eprojs (int | None): Dimension of input vectors from encoder.
        dunits (int | None): Dimension of input vectors for decoder.
        att_dim (int): Dimension of input vectors for attention.
        aconv_chans (int): Number of channels of output arrays from convolutional layer.
        aconv_filts (int): Size of filters of convolutional layer.

    """

    def __init__(self, eprojs, dunits, att_dim, aconv_chans, aconv_filts):
        super(AttLoc, self).__init__()
        with self.init_scope():
            self.mlp_enc = L.Linear(eprojs, att_dim)
            self.mlp_dec = L.Linear(dunits, att_dim, nobias=True)
            self.mlp_att = L.Linear(aconv_chans, att_dim, nobias=True)
            self.loc_conv = L.Convolution2D(
                1, aconv_chans, ksize=(1, 2 * aconv_filts + 1), pad=(0, aconv_filts)
            )
            self.gvec = L.Linear(att_dim, 1)

        self.dunits = dunits
        self.eprojs = eprojs
        self.att_dim = att_dim
        self.h_length = None
        self.enc_h = None
        self.pre_compute_enc_h = None
        self.aconv_chans = aconv_chans

    def reset(self):
        """Reset states."""
        self.h_length = None
        self.enc_h = None
        self.pre_compute_enc_h = None

    def __call__(self, enc_hs, dec_z, att_prev, scaling=2.0):
        """Compute AttLoc forward layer.

        Args:
            enc_hs (chainer.Variable | N-dimensional array):
                Input variable from encoders.
            dec_z (chainer.Variable | N-dimensional array): Input variable of decoder.
            att_prev (chainer.Variable | None): Attention weight.
            scaling (float): Scaling weight to make attention sharp.

        Returns:
            chainer.Variable: Weighted sum over flames.
            chainer.Variable: Attention weight.

        """
        batch = len(enc_hs)
        # pre-compute all h outside the decoder loop
        if self.pre_compute_enc_h is None:
            self.enc_h = F.pad_sequence(enc_hs)  # utt x frame x hdim
            self.h_length = self.enc_h.shape[1]
            # utt x frame x att_dim
            self.pre_compute_enc_h = self.mlp_enc(self.enc_h, n_batch_axes=2)

        if dec_z is None:
            dec_z = chainer.Variable(
                self.xp.zeros((batch, self.dunits), dtype=np.float32)
            )
        else:
            dec_z = dec_z.reshape(batch, self.dunits)

        # initialize attention weight with uniform dist.
        if att_prev is None:
            att_prev = [
                self.xp.full(hh.shape[0], 1.0 / hh.shape[0], dtype=np.float32)
                for hh in enc_hs
            ]
            att_prev = [chainer.Variable(att) for att in att_prev]
            att_prev = F.pad_sequence(att_prev)

        # att_prev: utt x frame -> utt x 1 x 1 x frame
        # -> utt x att_conv_chans x 1 x frame
        att_conv = self.loc_conv(att_prev.reshape(batch, 1, 1, self.h_length))
        # att_conv: utt x att_conv_chans x 1 x frame -> utt x frame x att_conv_chans
        att_conv = F.swapaxes(F.squeeze(att_conv, axis=2), 1, 2)
        # att_conv: utt x frame x att_conv_chans -> utt x frame x att_dim
        att_conv = self.mlp_att(att_conv, n_batch_axes=2)

        # dec_z_tiled: utt x frame x att_dim
        dec_z_tiled = F.broadcast_to(
            F.expand_dims(self.mlp_dec(dec_z), 1), self.pre_compute_enc_h.shape
        )

        # dot with gvec
        # utt x frame x att_dim -> utt x frame
        # TODO(watanabe) use batch_matmul
        e = F.squeeze(
            self.gvec(
                F.tanh(att_conv + self.pre_compute_enc_h + dec_z_tiled), n_batch_axes=2
            ),
            axis=2,
        )
        # Applying a minus-large-number filter
        # to make a probability value zero for a padded area
        # simply degrades the performance, and I gave up this implementation
        # Apply a scaling to make an attention sharp
        w = F.softmax(scaling * e)

        # weighted sum over flames
        # utt x hdim
        c = F.sum(
            self.enc_h * F.broadcast_to(F.expand_dims(w, 2), self.enc_h.shape), axis=1
        )

        return c, w


class NoAtt(chainer.Chain):
    """Compute non-attention layer.

    This layer is a dummy attention layer to be compatible with other
    attention-based models.

    """

    def __init__(self):
        super(NoAtt, self).__init__()
        self.h_length = None
        self.enc_h = None
        self.pre_compute_enc_h = None
        self.c = None

    def reset(self):
        """Reset states."""
        self.h_length = None
        self.enc_h = None
        self.pre_compute_enc_h = None
        self.c = None

    def __call__(self, enc_hs, dec_z, att_prev):
        """Compute NoAtt forward layer.

        Args:
            enc_hs (chainer.Variable | N-dimensional array):
                Input variable from encoders.
            dec_z: Dummy.
            att_prev (chainer.Variable | None): Attention weight.

        Returns:
            chainer.Variable: Sum over flames.
            chainer.Variable: Attention weight.

        """
        # pre-compute all h outside the decoder loop
        if self.pre_compute_enc_h is None:
            self.enc_h = F.pad_sequence(enc_hs)  # utt x frame x hdim
            self.h_length = self.enc_h.shape[1]

        # initialize attention weight with uniform dist.
        if att_prev is None:
            att_prev = [
                self.xp.full(hh.shape[0], 1.0 / hh.shape[0], dtype=np.float32)
                for hh in enc_hs
            ]
            att_prev = [chainer.Variable(att) for att in att_prev]
            att_prev = F.pad_sequence(att_prev)
            self.c = F.sum(
                self.enc_h
                * F.broadcast_to(F.expand_dims(att_prev, 2), self.enc_h.shape),
                axis=1,
            )

        return self.c, att_prev


def att_for(args):
    """Returns an attention layer given the program arguments.

    Args:
        args (Namespace): The arguments.

    Returns:
        chainer.Chain: The corresponding attention module.

    """
    if args.atype == "dot":
        att = AttDot(args.eprojs, args.dunits, args.adim)
    elif args.atype == "location":
        att = AttLoc(
            args.eprojs, args.dunits, args.adim, args.aconv_chans, args.aconv_filts
        )
    elif args.atype == "noatt":
        att = NoAtt()
    else:
        raise NotImplementedError(
            "chainer supports only noatt, dot, and location attention."
        )
    return att