File size: 8,939 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
#!/usr/bin/env python3
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
# This code is ported from the following implementation written in Torch.
# https://github.com/chainer/chainer/blob/master/examples/ptb/train_ptb_custom_loop.py
"""Language model training script."""
import logging
import os
import random
import subprocess
import sys
import configargparse
import numpy as np
from espnet import __version__
from espnet.nets.lm_interface import dynamic_import_lm
from espnet.optimizer.factory import dynamic_import_optimizer
from espnet.scheduler.scheduler import dynamic_import_scheduler
# NOTE: you need this func to generate our sphinx doc
def get_parser(parser=None, required=True):
"""Get parser."""
if parser is None:
parser = configargparse.ArgumentParser(
description="Train a new language model on one CPU or one GPU",
config_file_parser_class=configargparse.YAMLConfigFileParser,
formatter_class=configargparse.ArgumentDefaultsHelpFormatter,
)
# general configuration
parser.add("--config", is_config_file=True, help="config file path")
parser.add(
"--config2",
is_config_file=True,
help="second config file path that overwrites the settings in `--config`.",
)
parser.add(
"--config3",
is_config_file=True,
help="third config file path that overwrites the settings "
"in `--config` and `--config2`.",
)
parser.add_argument(
"--ngpu",
default=None,
type=int,
help="Number of GPUs. If not given, use all visible devices",
)
parser.add_argument(
"--train-dtype",
default="float32",
choices=["float16", "float32", "float64", "O0", "O1", "O2", "O3"],
help="Data type for training (only pytorch backend). "
"O0,O1,.. flags require apex. "
"See https://nvidia.github.io/apex/amp.html#opt-levels",
)
parser.add_argument(
"--backend",
default="chainer",
type=str,
choices=["chainer", "pytorch"],
help="Backend library",
)
parser.add_argument(
"--outdir", type=str, required=required, help="Output directory"
)
parser.add_argument("--debugmode", default=1, type=int, help="Debugmode")
parser.add_argument("--dict", type=str, required=required, help="Dictionary")
parser.add_argument("--seed", default=1, type=int, help="Random seed")
parser.add_argument(
"--resume",
"-r",
default="",
nargs="?",
help="Resume the training from snapshot",
)
parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option")
parser.add_argument(
"--tensorboard-dir",
default=None,
type=str,
nargs="?",
help="Tensorboard log dir path",
)
parser.add_argument(
"--report-interval-iters",
default=100,
type=int,
help="Report interval iterations",
)
# task related
parser.add_argument(
"--train-label",
type=str,
required=required,
help="Filename of train label data",
)
parser.add_argument(
"--valid-label",
type=str,
required=required,
help="Filename of validation label data",
)
parser.add_argument("--test-label", type=str, help="Filename of test label data")
parser.add_argument(
"--dump-hdf5-path",
type=str,
default=None,
help="Path to dump a preprocessed dataset as hdf5",
)
# training configuration
parser.add_argument("--opt", default="sgd", type=str, help="Optimizer")
parser.add_argument(
"--sortagrad",
default=0,
type=int,
nargs="?",
help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs",
)
parser.add_argument(
"--batchsize",
"-b",
type=int,
default=300,
help="Number of examples in each mini-batch",
)
parser.add_argument(
"--accum-grad", type=int, default=1, help="Number of gradient accumueration"
)
parser.add_argument(
"--epoch",
"-e",
type=int,
default=20,
help="Number of sweeps over the dataset to train",
)
parser.add_argument(
"--early-stop-criterion",
default="validation/main/loss",
type=str,
nargs="?",
help="Value to monitor to trigger an early stopping of the training",
)
parser.add_argument(
"--patience",
default=3,
type=int,
nargs="?",
help="Number of epochs "
"to wait without improvement before stopping the training",
)
parser.add_argument(
"--schedulers",
default=None,
action="append",
type=lambda kv: kv.split("="),
help="optimizer schedulers, you can configure params like:"
" <optimizer-param>-<scheduler-name>-<schduler-param>"
' e.g., "--schedulers lr=noam --lr-noam-warmup 1000".',
)
parser.add_argument(
"--gradclip",
"-c",
type=float,
default=5,
help="Gradient norm threshold to clip",
)
parser.add_argument(
"--maxlen",
type=int,
default=40,
help="Batch size is reduced if the input sequence > ML",
)
parser.add_argument(
"--model-module",
type=str,
default="default",
help="model defined module "
"(default: espnet.nets.xxx_backend.lm.default:DefaultRNNLM)",
)
return parser
def main(cmd_args):
"""Train LM."""
parser = get_parser()
args, _ = parser.parse_known_args(cmd_args)
if args.backend == "chainer" and args.train_dtype != "float32":
raise NotImplementedError(
f"chainer backend does not support --train-dtype {args.train_dtype}."
"Use --dtype float32."
)
if args.ngpu == 0 and args.train_dtype in ("O0", "O1", "O2", "O3", "float16"):
raise ValueError(
f"--train-dtype {args.train_dtype} does not support the CPU backend."
)
# parse arguments dynamically
model_class = dynamic_import_lm(args.model_module, args.backend)
model_class.add_arguments(parser)
if args.schedulers is not None:
for k, v in args.schedulers:
scheduler_class = dynamic_import_scheduler(v)
scheduler_class.add_arguments(k, parser)
opt_class = dynamic_import_optimizer(args.opt, args.backend)
opt_class.add_arguments(parser)
args = parser.parse_args(cmd_args)
# add version info in args
args.version = __version__
# logging info
if args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# If --ngpu is not given,
# 1. if CUDA_VISIBLE_DEVICES is set, all visible devices
# 2. if nvidia-smi exists, use all devices
# 3. else ngpu=0
if args.ngpu is None:
cvd = os.environ.get("CUDA_VISIBLE_DEVICES")
if cvd is not None:
ngpu = len(cvd.split(","))
else:
logging.warning("CUDA_VISIBLE_DEVICES is not set.")
try:
p = subprocess.run(
["nvidia-smi", "-L"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
except (subprocess.CalledProcessError, FileNotFoundError):
ngpu = 0
else:
ngpu = len(p.stderr.decode().split("\n")) - 1
args.ngpu = ngpu
else:
ngpu = args.ngpu
logging.info(f"ngpu: {ngpu}")
# display PYTHONPATH
logging.info("python path = " + os.environ.get("PYTHONPATH", "(None)"))
# seed setting
nseed = args.seed
random.seed(nseed)
np.random.seed(nseed)
# load dictionary
with open(args.dict, "rb") as f:
dictionary = f.readlines()
char_list = [entry.decode("utf-8").split(" ")[0] for entry in dictionary]
char_list.insert(0, "<blank>")
char_list.append("<eos>")
args.char_list_dict = {x: i for i, x in enumerate(char_list)}
args.n_vocab = len(char_list)
# train
logging.info("backend = " + args.backend)
if args.backend == "chainer":
from espnet.lm.chainer_backend.lm import train
train(args)
elif args.backend == "pytorch":
from espnet.lm.pytorch_backend.lm import train
train(args)
else:
raise ValueError("Only chainer and pytorch are supported.")
if __name__ == "__main__":
main(sys.argv[1:])
|