File size: 20,285 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
#!/usr/bin/env python3
# encoding: utf-8

# Copyright 2017 Tomoki Hayashi (Nagoya University)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Automatic speech recognition model training script."""

import logging
import os
import random
import subprocess
import sys

from distutils.version import LooseVersion

import configargparse
import numpy as np
import torch

from espnet import __version__
from espnet.utils.cli_utils import strtobool
from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES

is_torch_1_2_plus = LooseVersion(torch.__version__) >= LooseVersion("1.2")


# NOTE: you need this func to generate our sphinx doc
def get_parser(parser=None, required=True):
    """Get default arguments."""
    if parser is None:
        parser = configargparse.ArgumentParser(
            description="Train an automatic speech recognition (ASR) model on one CPU, "
            "one or multiple GPUs",
            config_file_parser_class=configargparse.YAMLConfigFileParser,
            formatter_class=configargparse.ArgumentDefaultsHelpFormatter,
        )
    # general configuration
    parser.add("--config", is_config_file=True, help="config file path")
    parser.add(
        "--config2",
        is_config_file=True,
        help="second config file path that overwrites the settings in `--config`.",
    )
    parser.add(
        "--config3",
        is_config_file=True,
        help="third config file path that overwrites the settings in "
        "`--config` and `--config2`.",
    )

    parser.add_argument(
        "--ngpu",
        default=None,
        type=int,
        help="Number of GPUs. If not given, use all visible devices",
    )
    parser.add_argument(
        "--train-dtype",
        default="float32",
        choices=["float16", "float32", "float64", "O0", "O1", "O2", "O3"],
        help="Data type for training (only pytorch backend). "
        "O0,O1,.. flags require apex. "
        "See https://nvidia.github.io/apex/amp.html#opt-levels",
    )
    parser.add_argument(
        "--backend",
        default="chainer",
        type=str,
        choices=["chainer", "pytorch"],
        help="Backend library",
    )
    parser.add_argument(
        "--outdir", type=str, required=required, help="Output directory"
    )
    parser.add_argument("--debugmode", default=1, type=int, help="Debugmode")
    parser.add_argument("--dict", required=required, help="Dictionary")
    parser.add_argument("--seed", default=1, type=int, help="Random seed")
    parser.add_argument("--debugdir", type=str, help="Output directory for debugging")
    parser.add_argument(
        "--resume",
        "-r",
        default="",
        nargs="?",
        help="Resume the training from snapshot",
    )
    parser.add_argument(
        "--minibatches",
        "-N",
        type=int,
        default="-1",
        help="Process only N minibatches (for debug)",
    )
    parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option")
    parser.add_argument(
        "--tensorboard-dir",
        default=None,
        type=str,
        nargs="?",
        help="Tensorboard log dir path",
    )
    parser.add_argument(
        "--report-interval-iters",
        default=100,
        type=int,
        help="Report interval iterations",
    )
    parser.add_argument(
        "--save-interval-iters",
        default=0,
        type=int,
        help="Save snapshot interval iterations",
    )
    # task related
    parser.add_argument(
        "--train-json",
        type=str,
        default=None,
        help="Filename of train label data (json)",
    )
    parser.add_argument(
        "--valid-json",
        type=str,
        default=None,
        help="Filename of validation label data (json)",
    )
    # network architecture
    parser.add_argument(
        "--model-module",
        type=str,
        default=None,
        help="model defined module (default: espnet.nets.xxx_backend.e2e_asr:E2E)",
    )
    # encoder
    parser.add_argument(
        "--num-encs", default=1, type=int, help="Number of encoders in the model."
    )
    # loss related
    parser.add_argument(
        "--ctc_type",
        default="warpctc",
        type=str,
        choices=["builtin", "warpctc", "gtnctc", "cudnnctc"],
        help="Type of CTC implementation to calculate loss.",
    )
    parser.add_argument(
        "--mtlalpha",
        default=0.5,
        type=float,
        help="Multitask learning coefficient, "
        "alpha: alpha*ctc_loss + (1-alpha)*att_loss ",
    )
    parser.add_argument(
        "--lsm-weight", default=0.0, type=float, help="Label smoothing weight"
    )
    # recognition options to compute CER/WER
    parser.add_argument(
        "--report-cer",
        default=False,
        action="store_true",
        help="Compute CER on development set",
    )
    parser.add_argument(
        "--report-wer",
        default=False,
        action="store_true",
        help="Compute WER on development set",
    )
    parser.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
    parser.add_argument("--beam-size", type=int, default=4, help="Beam size")
    parser.add_argument("--penalty", default=0.0, type=float, help="Incertion penalty")
    parser.add_argument(
        "--maxlenratio",
        default=0.0,
        type=float,
        help="""Input length ratio to obtain max output length.
                        If maxlenratio=0.0 (default), it uses a end-detect function
                        to automatically find maximum hypothesis lengths""",
    )
    parser.add_argument(
        "--minlenratio",
        default=0.0,
        type=float,
        help="Input length ratio to obtain min output length",
    )
    parser.add_argument(
        "--ctc-weight", default=0.3, type=float, help="CTC weight in joint decoding"
    )
    parser.add_argument(
        "--rnnlm", type=str, default=None, help="RNNLM model file to read"
    )
    parser.add_argument(
        "--rnnlm-conf", type=str, default=None, help="RNNLM model config file to read"
    )
    parser.add_argument("--lm-weight", default=0.1, type=float, help="RNNLM weight.")
    parser.add_argument("--sym-space", default="<space>", type=str, help="Space symbol")
    parser.add_argument("--sym-blank", default="<blank>", type=str, help="Blank symbol")
    # minibatch related
    parser.add_argument(
        "--sortagrad",
        default=0,
        type=int,
        nargs="?",
        help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs",
    )
    parser.add_argument(
        "--batch-count",
        default="auto",
        choices=BATCH_COUNT_CHOICES,
        help="How to count batch_size. "
        "The default (auto) will find how to count by args.",
    )
    parser.add_argument(
        "--batch-size",
        "--batch-seqs",
        "-b",
        default=0,
        type=int,
        help="Maximum seqs in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--batch-bins",
        default=0,
        type=int,
        help="Maximum bins in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--batch-frames-in",
        default=0,
        type=int,
        help="Maximum input frames in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--batch-frames-out",
        default=0,
        type=int,
        help="Maximum output frames in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--batch-frames-inout",
        default=0,
        type=int,
        help="Maximum input+output frames in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--maxlen-in",
        "--batch-seq-maxlen-in",
        default=800,
        type=int,
        metavar="ML",
        help="When --batch-count=seq, "
        "batch size is reduced if the input sequence length > ML.",
    )
    parser.add_argument(
        "--maxlen-out",
        "--batch-seq-maxlen-out",
        default=150,
        type=int,
        metavar="ML",
        help="When --batch-count=seq, "
        "batch size is reduced if the output sequence length > ML",
    )
    parser.add_argument(
        "--n-iter-processes",
        default=0,
        type=int,
        help="Number of processes of iterator",
    )
    parser.add_argument(
        "--preprocess-conf",
        type=str,
        default=None,
        nargs="?",
        help="The configuration file for the pre-processing",
    )
    # optimization related
    parser.add_argument(
        "--opt",
        default="adadelta",
        type=str,
        choices=["adadelta", "adam", "noam"],
        help="Optimizer",
    )
    parser.add_argument(
        "--accum-grad", default=1, type=int, help="Number of gradient accumuration"
    )
    parser.add_argument(
        "--eps", default=1e-8, type=float, help="Epsilon constant for optimizer"
    )
    parser.add_argument(
        "--eps-decay", default=0.01, type=float, help="Decaying ratio of epsilon"
    )
    parser.add_argument(
        "--weight-decay", default=0.0, type=float, help="Weight decay ratio"
    )
    parser.add_argument(
        "--criterion",
        default="acc",
        type=str,
        choices=["loss", "loss_eps_decay_only", "acc"],
        help="Criterion to perform epsilon decay",
    )
    parser.add_argument(
        "--threshold", default=1e-4, type=float, help="Threshold to stop iteration"
    )
    parser.add_argument(
        "--epochs", "-e", default=30, type=int, help="Maximum number of epochs"
    )
    parser.add_argument(
        "--early-stop-criterion",
        default="validation/main/acc",
        type=str,
        nargs="?",
        help="Value to monitor to trigger an early stopping of the training",
    )
    parser.add_argument(
        "--patience",
        default=3,
        type=int,
        nargs="?",
        help="Number of epochs to wait without improvement "
        "before stopping the training",
    )
    parser.add_argument(
        "--grad-clip", default=5, type=float, help="Gradient norm threshold to clip"
    )
    parser.add_argument(
        "--num-save-attention",
        default=3,
        type=int,
        help="Number of samples of attention to be saved",
    )
    parser.add_argument(
        "--num-save-ctc",
        default=3,
        type=int,
        help="Number of samples of CTC probability to be saved",
    )
    parser.add_argument(
        "--grad-noise",
        type=strtobool,
        default=False,
        help="The flag to switch to use noise injection to gradients during training",
    )
    # asr_mix related
    parser.add_argument(
        "--num-spkrs",
        default=1,
        type=int,
        choices=[1, 2],
        help="Number of speakers in the speech.",
    )
    # decoder related
    parser.add_argument(
        "--context-residual",
        default=False,
        type=strtobool,
        nargs="?",
        help="The flag to switch to use context vector residual in the decoder network",
    )
    # finetuning related
    parser.add_argument(
        "--enc-init",
        default=None,
        type=str,
        help="Pre-trained ASR model to initialize encoder.",
    )
    parser.add_argument(
        "--enc-init-mods",
        default="enc.enc.",
        type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
        help="List of encoder modules to initialize, separated by a comma.",
    )
    parser.add_argument(
        "--dec-init",
        default=None,
        type=str,
        help="Pre-trained ASR, MT or LM model to initialize decoder.",
    )
    parser.add_argument(
        "--dec-init-mods",
        default="att.,dec.",
        type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
        help="List of decoder modules to initialize, separated by a comma.",
    )
    parser.add_argument(
        "--freeze-mods",
        default=None,
        type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
        help="List of modules to freeze, separated by a comma.",
    )
    # front end related
    parser.add_argument(
        "--use-frontend",
        type=strtobool,
        default=False,
        help="The flag to switch to use frontend system.",
    )

    # WPE related
    parser.add_argument(
        "--use-wpe",
        type=strtobool,
        default=False,
        help="Apply Weighted Prediction Error",
    )
    parser.add_argument(
        "--wtype",
        default="blstmp",
        type=str,
        choices=[
            "lstm",
            "blstm",
            "lstmp",
            "blstmp",
            "vgglstmp",
            "vggblstmp",
            "vgglstm",
            "vggblstm",
            "gru",
            "bgru",
            "grup",
            "bgrup",
            "vgggrup",
            "vggbgrup",
            "vgggru",
            "vggbgru",
        ],
        help="Type of encoder network architecture "
        "of the mask estimator for WPE. "
        "",
    )
    parser.add_argument("--wlayers", type=int, default=2, help="")
    parser.add_argument("--wunits", type=int, default=300, help="")
    parser.add_argument("--wprojs", type=int, default=300, help="")
    parser.add_argument("--wdropout-rate", type=float, default=0.0, help="")
    parser.add_argument("--wpe-taps", type=int, default=5, help="")
    parser.add_argument("--wpe-delay", type=int, default=3, help="")
    parser.add_argument(
        "--use-dnn-mask-for-wpe",
        type=strtobool,
        default=False,
        help="Use DNN to estimate the power spectrogram. "
        "This option is experimental.",
    )
    # Beamformer related
    parser.add_argument("--use-beamformer", type=strtobool, default=True, help="")
    parser.add_argument(
        "--btype",
        default="blstmp",
        type=str,
        choices=[
            "lstm",
            "blstm",
            "lstmp",
            "blstmp",
            "vgglstmp",
            "vggblstmp",
            "vgglstm",
            "vggblstm",
            "gru",
            "bgru",
            "grup",
            "bgrup",
            "vgggrup",
            "vggbgrup",
            "vgggru",
            "vggbgru",
        ],
        help="Type of encoder network architecture "
        "of the mask estimator for Beamformer.",
    )
    parser.add_argument("--blayers", type=int, default=2, help="")
    parser.add_argument("--bunits", type=int, default=300, help="")
    parser.add_argument("--bprojs", type=int, default=300, help="")
    parser.add_argument("--badim", type=int, default=320, help="")
    parser.add_argument(
        "--bnmask",
        type=int,
        default=2,
        help="Number of beamforming masks, " "default is 2 for [speech, noise].",
    )
    parser.add_argument(
        "--ref-channel",
        type=int,
        default=-1,
        help="The reference channel used for beamformer. "
        "By default, the channel is estimated by DNN.",
    )
    parser.add_argument("--bdropout-rate", type=float, default=0.0, help="")
    # Feature transform: Normalization
    parser.add_argument(
        "--stats-file",
        type=str,
        default=None,
        help="The stats file for the feature normalization",
    )
    parser.add_argument(
        "--apply-uttmvn",
        type=strtobool,
        default=True,
        help="Apply utterance level mean " "variance normalization.",
    )
    parser.add_argument("--uttmvn-norm-means", type=strtobool, default=True, help="")
    parser.add_argument("--uttmvn-norm-vars", type=strtobool, default=False, help="")
    # Feature transform: Fbank
    parser.add_argument(
        "--fbank-fs",
        type=int,
        default=16000,
        help="The sample frequency used for " "the mel-fbank creation.",
    )
    parser.add_argument(
        "--n-mels", type=int, default=80, help="The number of mel-frequency bins."
    )
    parser.add_argument("--fbank-fmin", type=float, default=0.0, help="")
    parser.add_argument("--fbank-fmax", type=float, default=None, help="")
    return parser


def main(cmd_args):
    """Run the main training function."""
    parser = get_parser()
    args, _ = parser.parse_known_args(cmd_args)
    if args.backend == "chainer" and args.train_dtype != "float32":
        raise NotImplementedError(
            f"chainer backend does not support --train-dtype {args.train_dtype}."
            "Use --dtype float32."
        )
    if args.ngpu == 0 and args.train_dtype in ("O0", "O1", "O2", "O3", "float16"):
        raise ValueError(
            f"--train-dtype {args.train_dtype} does not support the CPU backend."
        )

    from espnet.utils.dynamic_import import dynamic_import

    if args.model_module is None:
        if args.num_spkrs == 1:
            model_module = "espnet.nets." + args.backend + "_backend.e2e_asr:E2E"
        else:
            model_module = "espnet.nets." + args.backend + "_backend.e2e_asr_mix:E2E"
    else:
        model_module = args.model_module
    model_class = dynamic_import(model_module)
    model_class.add_arguments(parser)

    args = parser.parse_args(cmd_args)
    args.model_module = model_module
    if "chainer_backend" in args.model_module:
        args.backend = "chainer"
    if "pytorch_backend" in args.model_module:
        args.backend = "pytorch"

    # add version info in args
    args.version = __version__

    # logging info
    if args.verbose > 0:
        logging.basicConfig(
            level=logging.INFO,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
    else:
        logging.basicConfig(
            level=logging.WARN,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
        logging.warning("Skip DEBUG/INFO messages")

    # If --ngpu is not given,
    #   1. if CUDA_VISIBLE_DEVICES is set, all visible devices
    #   2. if nvidia-smi exists, use all devices
    #   3. else ngpu=0
    if args.ngpu is None:
        cvd = os.environ.get("CUDA_VISIBLE_DEVICES")
        if cvd is not None:
            ngpu = len(cvd.split(","))
        else:
            logging.warning("CUDA_VISIBLE_DEVICES is not set.")
            try:
                p = subprocess.run(
                    ["nvidia-smi", "-L"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
                )
            except (subprocess.CalledProcessError, FileNotFoundError):
                ngpu = 0
            else:
                ngpu = len(p.stderr.decode().split("\n")) - 1
    else:
        if is_torch_1_2_plus and args.ngpu != 1:
            logging.debug(
                "There are some bugs with multi-GPU processing in PyTorch 1.2+"
                + " (see https://github.com/pytorch/pytorch/issues/21108)"
            )
        ngpu = args.ngpu
    logging.info(f"ngpu: {ngpu}")

    # display PYTHONPATH
    logging.info("python path = " + os.environ.get("PYTHONPATH", "(None)"))

    # set random seed
    logging.info("random seed = %d" % args.seed)
    random.seed(args.seed)
    np.random.seed(args.seed)

    # load dictionary for debug log
    if args.dict is not None:
        with open(args.dict, "rb") as f:
            dictionary = f.readlines()
        char_list = [entry.decode("utf-8").split(" ")[0] for entry in dictionary]
        char_list.insert(0, "<blank>")
        char_list.append("<eos>")
        # for non-autoregressive maskctc model
        if "maskctc" in args.model_module:
            char_list.append("<mask>")
        args.char_list = char_list
    else:
        args.char_list = None

    # train
    logging.info("backend = " + args.backend)

    if args.num_spkrs == 1:
        if args.backend == "chainer":
            from espnet.asr.chainer_backend.asr import train

            train(args)
        elif args.backend == "pytorch":
            from espnet.asr.pytorch_backend.asr import train

            train(args)
        else:
            raise ValueError("Only chainer and pytorch are supported.")
    else:
        # FIXME(kamo): Support --model-module
        if args.backend == "pytorch":
            from espnet.asr.pytorch_backend.asr_mix import train

            train(args)
        else:
            raise ValueError("Only pytorch is supported.")


if __name__ == "__main__":
    main(sys.argv[1:])