File size: 20,285 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
#!/usr/bin/env python3
# encoding: utf-8
# Copyright 2017 Tomoki Hayashi (Nagoya University)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Automatic speech recognition model training script."""
import logging
import os
import random
import subprocess
import sys
from distutils.version import LooseVersion
import configargparse
import numpy as np
import torch
from espnet import __version__
from espnet.utils.cli_utils import strtobool
from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES
is_torch_1_2_plus = LooseVersion(torch.__version__) >= LooseVersion("1.2")
# NOTE: you need this func to generate our sphinx doc
def get_parser(parser=None, required=True):
"""Get default arguments."""
if parser is None:
parser = configargparse.ArgumentParser(
description="Train an automatic speech recognition (ASR) model on one CPU, "
"one or multiple GPUs",
config_file_parser_class=configargparse.YAMLConfigFileParser,
formatter_class=configargparse.ArgumentDefaultsHelpFormatter,
)
# general configuration
parser.add("--config", is_config_file=True, help="config file path")
parser.add(
"--config2",
is_config_file=True,
help="second config file path that overwrites the settings in `--config`.",
)
parser.add(
"--config3",
is_config_file=True,
help="third config file path that overwrites the settings in "
"`--config` and `--config2`.",
)
parser.add_argument(
"--ngpu",
default=None,
type=int,
help="Number of GPUs. If not given, use all visible devices",
)
parser.add_argument(
"--train-dtype",
default="float32",
choices=["float16", "float32", "float64", "O0", "O1", "O2", "O3"],
help="Data type for training (only pytorch backend). "
"O0,O1,.. flags require apex. "
"See https://nvidia.github.io/apex/amp.html#opt-levels",
)
parser.add_argument(
"--backend",
default="chainer",
type=str,
choices=["chainer", "pytorch"],
help="Backend library",
)
parser.add_argument(
"--outdir", type=str, required=required, help="Output directory"
)
parser.add_argument("--debugmode", default=1, type=int, help="Debugmode")
parser.add_argument("--dict", required=required, help="Dictionary")
parser.add_argument("--seed", default=1, type=int, help="Random seed")
parser.add_argument("--debugdir", type=str, help="Output directory for debugging")
parser.add_argument(
"--resume",
"-r",
default="",
nargs="?",
help="Resume the training from snapshot",
)
parser.add_argument(
"--minibatches",
"-N",
type=int,
default="-1",
help="Process only N minibatches (for debug)",
)
parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option")
parser.add_argument(
"--tensorboard-dir",
default=None,
type=str,
nargs="?",
help="Tensorboard log dir path",
)
parser.add_argument(
"--report-interval-iters",
default=100,
type=int,
help="Report interval iterations",
)
parser.add_argument(
"--save-interval-iters",
default=0,
type=int,
help="Save snapshot interval iterations",
)
# task related
parser.add_argument(
"--train-json",
type=str,
default=None,
help="Filename of train label data (json)",
)
parser.add_argument(
"--valid-json",
type=str,
default=None,
help="Filename of validation label data (json)",
)
# network architecture
parser.add_argument(
"--model-module",
type=str,
default=None,
help="model defined module (default: espnet.nets.xxx_backend.e2e_asr:E2E)",
)
# encoder
parser.add_argument(
"--num-encs", default=1, type=int, help="Number of encoders in the model."
)
# loss related
parser.add_argument(
"--ctc_type",
default="warpctc",
type=str,
choices=["builtin", "warpctc", "gtnctc", "cudnnctc"],
help="Type of CTC implementation to calculate loss.",
)
parser.add_argument(
"--mtlalpha",
default=0.5,
type=float,
help="Multitask learning coefficient, "
"alpha: alpha*ctc_loss + (1-alpha)*att_loss ",
)
parser.add_argument(
"--lsm-weight", default=0.0, type=float, help="Label smoothing weight"
)
# recognition options to compute CER/WER
parser.add_argument(
"--report-cer",
default=False,
action="store_true",
help="Compute CER on development set",
)
parser.add_argument(
"--report-wer",
default=False,
action="store_true",
help="Compute WER on development set",
)
parser.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
parser.add_argument("--beam-size", type=int, default=4, help="Beam size")
parser.add_argument("--penalty", default=0.0, type=float, help="Incertion penalty")
parser.add_argument(
"--maxlenratio",
default=0.0,
type=float,
help="""Input length ratio to obtain max output length.
If maxlenratio=0.0 (default), it uses a end-detect function
to automatically find maximum hypothesis lengths""",
)
parser.add_argument(
"--minlenratio",
default=0.0,
type=float,
help="Input length ratio to obtain min output length",
)
parser.add_argument(
"--ctc-weight", default=0.3, type=float, help="CTC weight in joint decoding"
)
parser.add_argument(
"--rnnlm", type=str, default=None, help="RNNLM model file to read"
)
parser.add_argument(
"--rnnlm-conf", type=str, default=None, help="RNNLM model config file to read"
)
parser.add_argument("--lm-weight", default=0.1, type=float, help="RNNLM weight.")
parser.add_argument("--sym-space", default="<space>", type=str, help="Space symbol")
parser.add_argument("--sym-blank", default="<blank>", type=str, help="Blank symbol")
# minibatch related
parser.add_argument(
"--sortagrad",
default=0,
type=int,
nargs="?",
help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs",
)
parser.add_argument(
"--batch-count",
default="auto",
choices=BATCH_COUNT_CHOICES,
help="How to count batch_size. "
"The default (auto) will find how to count by args.",
)
parser.add_argument(
"--batch-size",
"--batch-seqs",
"-b",
default=0,
type=int,
help="Maximum seqs in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-bins",
default=0,
type=int,
help="Maximum bins in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-frames-in",
default=0,
type=int,
help="Maximum input frames in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-frames-out",
default=0,
type=int,
help="Maximum output frames in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-frames-inout",
default=0,
type=int,
help="Maximum input+output frames in a minibatch (0 to disable)",
)
parser.add_argument(
"--maxlen-in",
"--batch-seq-maxlen-in",
default=800,
type=int,
metavar="ML",
help="When --batch-count=seq, "
"batch size is reduced if the input sequence length > ML.",
)
parser.add_argument(
"--maxlen-out",
"--batch-seq-maxlen-out",
default=150,
type=int,
metavar="ML",
help="When --batch-count=seq, "
"batch size is reduced if the output sequence length > ML",
)
parser.add_argument(
"--n-iter-processes",
default=0,
type=int,
help="Number of processes of iterator",
)
parser.add_argument(
"--preprocess-conf",
type=str,
default=None,
nargs="?",
help="The configuration file for the pre-processing",
)
# optimization related
parser.add_argument(
"--opt",
default="adadelta",
type=str,
choices=["adadelta", "adam", "noam"],
help="Optimizer",
)
parser.add_argument(
"--accum-grad", default=1, type=int, help="Number of gradient accumuration"
)
parser.add_argument(
"--eps", default=1e-8, type=float, help="Epsilon constant for optimizer"
)
parser.add_argument(
"--eps-decay", default=0.01, type=float, help="Decaying ratio of epsilon"
)
parser.add_argument(
"--weight-decay", default=0.0, type=float, help="Weight decay ratio"
)
parser.add_argument(
"--criterion",
default="acc",
type=str,
choices=["loss", "loss_eps_decay_only", "acc"],
help="Criterion to perform epsilon decay",
)
parser.add_argument(
"--threshold", default=1e-4, type=float, help="Threshold to stop iteration"
)
parser.add_argument(
"--epochs", "-e", default=30, type=int, help="Maximum number of epochs"
)
parser.add_argument(
"--early-stop-criterion",
default="validation/main/acc",
type=str,
nargs="?",
help="Value to monitor to trigger an early stopping of the training",
)
parser.add_argument(
"--patience",
default=3,
type=int,
nargs="?",
help="Number of epochs to wait without improvement "
"before stopping the training",
)
parser.add_argument(
"--grad-clip", default=5, type=float, help="Gradient norm threshold to clip"
)
parser.add_argument(
"--num-save-attention",
default=3,
type=int,
help="Number of samples of attention to be saved",
)
parser.add_argument(
"--num-save-ctc",
default=3,
type=int,
help="Number of samples of CTC probability to be saved",
)
parser.add_argument(
"--grad-noise",
type=strtobool,
default=False,
help="The flag to switch to use noise injection to gradients during training",
)
# asr_mix related
parser.add_argument(
"--num-spkrs",
default=1,
type=int,
choices=[1, 2],
help="Number of speakers in the speech.",
)
# decoder related
parser.add_argument(
"--context-residual",
default=False,
type=strtobool,
nargs="?",
help="The flag to switch to use context vector residual in the decoder network",
)
# finetuning related
parser.add_argument(
"--enc-init",
default=None,
type=str,
help="Pre-trained ASR model to initialize encoder.",
)
parser.add_argument(
"--enc-init-mods",
default="enc.enc.",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="List of encoder modules to initialize, separated by a comma.",
)
parser.add_argument(
"--dec-init",
default=None,
type=str,
help="Pre-trained ASR, MT or LM model to initialize decoder.",
)
parser.add_argument(
"--dec-init-mods",
default="att.,dec.",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="List of decoder modules to initialize, separated by a comma.",
)
parser.add_argument(
"--freeze-mods",
default=None,
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="List of modules to freeze, separated by a comma.",
)
# front end related
parser.add_argument(
"--use-frontend",
type=strtobool,
default=False,
help="The flag to switch to use frontend system.",
)
# WPE related
parser.add_argument(
"--use-wpe",
type=strtobool,
default=False,
help="Apply Weighted Prediction Error",
)
parser.add_argument(
"--wtype",
default="blstmp",
type=str,
choices=[
"lstm",
"blstm",
"lstmp",
"blstmp",
"vgglstmp",
"vggblstmp",
"vgglstm",
"vggblstm",
"gru",
"bgru",
"grup",
"bgrup",
"vgggrup",
"vggbgrup",
"vgggru",
"vggbgru",
],
help="Type of encoder network architecture "
"of the mask estimator for WPE. "
"",
)
parser.add_argument("--wlayers", type=int, default=2, help="")
parser.add_argument("--wunits", type=int, default=300, help="")
parser.add_argument("--wprojs", type=int, default=300, help="")
parser.add_argument("--wdropout-rate", type=float, default=0.0, help="")
parser.add_argument("--wpe-taps", type=int, default=5, help="")
parser.add_argument("--wpe-delay", type=int, default=3, help="")
parser.add_argument(
"--use-dnn-mask-for-wpe",
type=strtobool,
default=False,
help="Use DNN to estimate the power spectrogram. "
"This option is experimental.",
)
# Beamformer related
parser.add_argument("--use-beamformer", type=strtobool, default=True, help="")
parser.add_argument(
"--btype",
default="blstmp",
type=str,
choices=[
"lstm",
"blstm",
"lstmp",
"blstmp",
"vgglstmp",
"vggblstmp",
"vgglstm",
"vggblstm",
"gru",
"bgru",
"grup",
"bgrup",
"vgggrup",
"vggbgrup",
"vgggru",
"vggbgru",
],
help="Type of encoder network architecture "
"of the mask estimator for Beamformer.",
)
parser.add_argument("--blayers", type=int, default=2, help="")
parser.add_argument("--bunits", type=int, default=300, help="")
parser.add_argument("--bprojs", type=int, default=300, help="")
parser.add_argument("--badim", type=int, default=320, help="")
parser.add_argument(
"--bnmask",
type=int,
default=2,
help="Number of beamforming masks, " "default is 2 for [speech, noise].",
)
parser.add_argument(
"--ref-channel",
type=int,
default=-1,
help="The reference channel used for beamformer. "
"By default, the channel is estimated by DNN.",
)
parser.add_argument("--bdropout-rate", type=float, default=0.0, help="")
# Feature transform: Normalization
parser.add_argument(
"--stats-file",
type=str,
default=None,
help="The stats file for the feature normalization",
)
parser.add_argument(
"--apply-uttmvn",
type=strtobool,
default=True,
help="Apply utterance level mean " "variance normalization.",
)
parser.add_argument("--uttmvn-norm-means", type=strtobool, default=True, help="")
parser.add_argument("--uttmvn-norm-vars", type=strtobool, default=False, help="")
# Feature transform: Fbank
parser.add_argument(
"--fbank-fs",
type=int,
default=16000,
help="The sample frequency used for " "the mel-fbank creation.",
)
parser.add_argument(
"--n-mels", type=int, default=80, help="The number of mel-frequency bins."
)
parser.add_argument("--fbank-fmin", type=float, default=0.0, help="")
parser.add_argument("--fbank-fmax", type=float, default=None, help="")
return parser
def main(cmd_args):
"""Run the main training function."""
parser = get_parser()
args, _ = parser.parse_known_args(cmd_args)
if args.backend == "chainer" and args.train_dtype != "float32":
raise NotImplementedError(
f"chainer backend does not support --train-dtype {args.train_dtype}."
"Use --dtype float32."
)
if args.ngpu == 0 and args.train_dtype in ("O0", "O1", "O2", "O3", "float16"):
raise ValueError(
f"--train-dtype {args.train_dtype} does not support the CPU backend."
)
from espnet.utils.dynamic_import import dynamic_import
if args.model_module is None:
if args.num_spkrs == 1:
model_module = "espnet.nets." + args.backend + "_backend.e2e_asr:E2E"
else:
model_module = "espnet.nets." + args.backend + "_backend.e2e_asr_mix:E2E"
else:
model_module = args.model_module
model_class = dynamic_import(model_module)
model_class.add_arguments(parser)
args = parser.parse_args(cmd_args)
args.model_module = model_module
if "chainer_backend" in args.model_module:
args.backend = "chainer"
if "pytorch_backend" in args.model_module:
args.backend = "pytorch"
# add version info in args
args.version = __version__
# logging info
if args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# If --ngpu is not given,
# 1. if CUDA_VISIBLE_DEVICES is set, all visible devices
# 2. if nvidia-smi exists, use all devices
# 3. else ngpu=0
if args.ngpu is None:
cvd = os.environ.get("CUDA_VISIBLE_DEVICES")
if cvd is not None:
ngpu = len(cvd.split(","))
else:
logging.warning("CUDA_VISIBLE_DEVICES is not set.")
try:
p = subprocess.run(
["nvidia-smi", "-L"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
except (subprocess.CalledProcessError, FileNotFoundError):
ngpu = 0
else:
ngpu = len(p.stderr.decode().split("\n")) - 1
else:
if is_torch_1_2_plus and args.ngpu != 1:
logging.debug(
"There are some bugs with multi-GPU processing in PyTorch 1.2+"
+ " (see https://github.com/pytorch/pytorch/issues/21108)"
)
ngpu = args.ngpu
logging.info(f"ngpu: {ngpu}")
# display PYTHONPATH
logging.info("python path = " + os.environ.get("PYTHONPATH", "(None)"))
# set random seed
logging.info("random seed = %d" % args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
# load dictionary for debug log
if args.dict is not None:
with open(args.dict, "rb") as f:
dictionary = f.readlines()
char_list = [entry.decode("utf-8").split(" ")[0] for entry in dictionary]
char_list.insert(0, "<blank>")
char_list.append("<eos>")
# for non-autoregressive maskctc model
if "maskctc" in args.model_module:
char_list.append("<mask>")
args.char_list = char_list
else:
args.char_list = None
# train
logging.info("backend = " + args.backend)
if args.num_spkrs == 1:
if args.backend == "chainer":
from espnet.asr.chainer_backend.asr import train
train(args)
elif args.backend == "pytorch":
from espnet.asr.pytorch_backend.asr import train
train(args)
else:
raise ValueError("Only chainer and pytorch are supported.")
else:
# FIXME(kamo): Support --model-module
if args.backend == "pytorch":
from espnet.asr.pytorch_backend.asr_mix import train
train(args)
else:
raise ValueError("Only pytorch is supported.")
if __name__ == "__main__":
main(sys.argv[1:])
|