Spaces:
Sleeping
Sleeping
File size: 24,121 Bytes
31158e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "AzjuIqm8XkVM"
},
"source": [
"# BNB with Vector Autoregressive (VAR) model\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wHEWczG-XkVO"
},
"source": [
"## Importing/Downloading all the libraries required"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5MSWcYhxXkVO"
},
"outputs": [],
"source": [
"import re\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer\n",
"from statsmodels.tsa.api import VAR\n",
"from statsmodels.tsa.stattools import adfuller\n",
"from statsmodels.tsa.stattools import grangercausalitytests\n",
"from statsmodels.tsa.vector_ar.vecm import coint_johansen\n",
"from statsmodels.stats.stattools import durbin_watson"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xMBiAqfnXkVP"
},
"source": [
"## Data Preprocessing\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "72b3-smHXkVQ"
},
"source": [
"### Importing and summarizing the datasets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BkOzHFqYXkVQ"
},
"outputs": [],
"source": [
"sentimentdf = pd.read_parquet(\"hf://datasets/tmotagam/Cryptocurrencies-sentiment-from-X/BNB-sentiment-dataset.parquet\")\n",
"sentimentdf.drop('id', axis=1, inplace=True)\n",
"sentimentdf.set_index('date', inplace=True)\n",
"bnbdf = pd.read_excel('BNB-USD.xlsx', parse_dates=['timestamp'], index_col=0)\n",
"print('====================================================================================')\n",
"print('BNB Sentiment Summary:')\n",
"print(sentimentdf.describe())\n",
"print('====================================================================================')\n",
"print('BNB Sentiment Data:')\n",
"print(sentimentdf.tail())\n",
"print('====================================================================================')\n",
"print('BNB Price Summary:')\n",
"print(bnbdf.describe())\n",
"print('====================================================================================')\n",
"print('BNB Price Data:')\n",
"print(bnbdf.tail())\n",
"print('====================================================================================')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WwondoY4Yxb9"
},
"source": [
"### Removing duplicate and unwanted data points, columns from the datasets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "i5ZqpNPoYz_1"
},
"outputs": [],
"source": [
"sentimentdf['tmpdate'] = sentimentdf.index\n",
"date_ids = sentimentdf['tmpdate'].unique()\n",
"for date in date_ids:\n",
" tmpdf = sentimentdf[sentimentdf['tmpdate'] == date]\n",
" tmpdf = tmpdf.drop_duplicates()\n",
" sentimentdf = pd.concat([sentimentdf, tmpdf]).drop_duplicates()\n",
"sentimentdf = sentimentdf.drop('tmpdate', axis=1)\n",
"bnbdf.drop(['low', 'open', 'volume', 'close', 'high'], axis=1, inplace=True)\n",
"bnbdf = bnbdf.loc['2021-12-29':]\n",
"print('====================================================================================')\n",
"print('BNB Sentiment Summary:')\n",
"print(sentimentdf.describe())\n",
"print('====================================================================================')\n",
"print('BNB Sentiment Data:')\n",
"print(sentimentdf.head())\n",
"print('====================================================================================')\n",
"print('BNB Price Summary:')\n",
"print(bnbdf.describe())\n",
"print('====================================================================================')\n",
"print('BNB Price Data:')\n",
"print(bnbdf.head())\n",
"print('====================================================================================')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xOTtORZwZIxE"
},
"source": [
"### Getting sentiment score and there average using VADER"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QzmxUlXCZJjE"
},
"outputs": [],
"source": [
"analyzer = SentimentIntensityAnalyzer()\n",
"sentimentdf['neg'] = [analyzer.polarity_scores(re.sub(r\"(@[A-Za-z0–9_]+)|[^\\w\\s]|#|http\\S+\", \"\", x.replace(\"\\n\",\" \")))['neg'] for x in sentimentdf['content']]\n",
"sentimentdf['pos'] = [analyzer.polarity_scores(re.sub(r\"(@[A-Za-z0–9_]+)|[^\\w\\s]|#|http\\S+\", \"\", x.replace(\"\\n\",\" \")))['pos'] for x in sentimentdf['content']]\n",
"sentimentdf['neu'] = [analyzer.polarity_scores(re.sub(r\"(@[A-Za-z0–9_]+)|[^\\w\\s]|#|http\\S+\", \"\", x.replace(\"\\n\",\" \")))['neu'] for x in sentimentdf['content']]\n",
"sentimentdf.drop(['content'], axis=1, inplace=True)\n",
"df_grouped = sentimentdf.groupby(sentimentdf.index.date)\n",
"averages = df_grouped.apply(lambda x: np.sum(x, axis=0) / x.shape[0])\n",
"averages_reshape = np.vstack(averages.values)\n",
"df_averages = pd.DataFrame(averages_reshape, index=averages.index, columns=sentimentdf.columns)\n",
"print('====================================================================================')\n",
"print('BNB Sentiment Summary:')\n",
"print(df_averages.describe())\n",
"print('====================================================================================')\n",
"print('BNB Sentiment Data:')\n",
"print(df_averages.tail())\n",
"print('====================================================================================')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DuqriTWvZQ6L"
},
"source": [
"### Combining the two datasets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JGA0mmRWZR37"
},
"outputs": [],
"source": [
"df = bnbdf.assign(neg=df_averages['neg'], pos=df_averages['pos'], neu=df_averages['neu'])\n",
"print('====================================================================================')\n",
"print('Summary:')\n",
"print(df.describe())\n",
"print('====================================================================================')\n",
"print('Data:')\n",
"print(df.head())\n",
"print('====================================================================================')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tUYrxTjYXkVQ"
},
"source": [
"### Plotting the dataset\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CJSJRPy6XkVQ"
},
"outputs": [],
"source": [
"fig, axes = plt.subplots(nrows=4, ncols=1, dpi=120, figsize=(10,6))\n",
"for i, ax in enumerate(axes.flatten()):\n",
" data = df[df.columns[i]]\n",
" ax.plot(data, color='red', linewidth=1)\n",
" ax.set_title(df.columns[i])\n",
" ax.xaxis.set_ticks_position('none')\n",
" ax.yaxis.set_ticks_position('none')\n",
" ax.spines[\"top\"].set_alpha(0)\n",
" ax.tick_params(labelsize=6)\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "01lmepp2XkVR"
},
"source": [
"### Granger Causality Test\n",
"\n",
"Granger Causality Test is of all possible combinations of the Time series.\n",
"The rows are the response variable, columns are predictors. The values in the table\n",
"are the P-Values. P-Values lesser than the significance level (0.05), implies\n",
"the Null Hypothesis that the coefficients of the corresponding past values is\n",
"zero, that is, the X does not cause Y can be rejected.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "W2kCxKeiXkVR"
},
"outputs": [],
"source": [
"maxlag=12\n",
"test = 'ssr_chi2test'\n",
"def grangers_causation_matrix(data, variables, test='ssr_chi2test', verbose=False):\n",
" df = pd.DataFrame(np.zeros((len(variables), len(variables))), columns=variables, index=variables)\n",
" for c in df.columns:\n",
" for r in df.index:\n",
" test_result = grangercausalitytests(data[[r, c]], maxlag=maxlag)\n",
" p_values = [round(test_result[i+1][0][test][1],4) for i in range(maxlag)]\n",
" min_p_value = np.min(p_values)\n",
" df.loc[r, c] = min_p_value\n",
" df.columns = [var + '_x' for var in variables]\n",
" df.index = [var + '_y' for var in variables]\n",
" return df\n",
"\n",
"grangers_causation_matrix(df, variables = df.columns)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Isb48EmCXkVR"
},
"source": [
"### Johanson's Cointegration Test\n",
"\n",
"The Johansen test, named after Søren Johansen, is a procedure for testing cointegration of several, say k, I(1) time series.\n",
"This test permits more than one cointegrating relationship so is more generally applicable than the Engle–Granger test which is based on the Dickey–Fuller (or the augmented) test for unit roots in the residuals from a single (estimated) cointegrating relationship.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "s_X5RDSnXkVS"
},
"outputs": [],
"source": [
"def cointegration_test(df, alpha=0.05):\n",
" out = coint_johansen(df,-1,5)\n",
" d = {'0.90':0, '0.95':1, '0.99':2}\n",
" traces = out.lr1\n",
" cvts = out.cvt[:, d[str(1-alpha)]]\n",
" def adjust(val, length= 6): return str(val).ljust(length)\n",
"\n",
" # Summary\n",
" print('Name :: Test Stat > C(95%) => Signif \\n', '--'*20)\n",
" for col, trace, cvt in zip(df.columns, traces, cvts):\n",
" print(adjust(col), ':: ', adjust(round(trace,2), 9), \">\", adjust(cvt, 8), ' => ' , trace > cvt)\n",
"\n",
"cointegration_test(df)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TavSdejEXkVS"
},
"source": [
"### Train and Test Split\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "inkc6vy_XkVS"
},
"outputs": [],
"source": [
"nobs = 10 # number of observations to be forecasted\n",
"df_train, df_test = df[0:-nobs], df[-nobs:]\n",
"\n",
"print(df_train.shape)\n",
"print(df_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3PIWMeTyXkVS"
},
"source": [
"### ADFuller to test for Stationarity of given series\n",
"\n",
"An augmented Dickey–Fuller test (ADF) tests the null hypothesis that a unit root is present in a time series sample.\n",
"The alternative hypothesis is different depending on which version of the test is used, but is usually stationarity or trend-stationarity.\n",
"It is an augmented version of the Dickey–Fuller test for a larger and more complicated set of time series models.\n",
"\n",
"The augmented Dickey–Fuller (ADF) statistic, used in the test, is a negative number.\n",
"The more negative it is, the stronger the rejection of the hypothesis that there is a unit root at some level of confidence.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "oEJRTZq0XkVT"
},
"outputs": [],
"source": [
"def adfuller_test(series,name, signif=0.05, verbose=False):\n",
" r = adfuller(series, autolag='AIC')\n",
" output = {'test_statistic':round(r[0], 4), 'pvalue':round(r[1], 4), 'n_lags':round(r[2], 4), 'n_obs':r[3]}\n",
" p_value = output['pvalue']\n",
" def adjust(val, length= 6): return str(val).ljust(length)\n",
"\n",
" print(f' Augmented Dickey-Fuller Test on \"{name}\"', \"\\n \", '-'*47)\n",
" print(f' Null Hypothesis: Data has unit root. Non-Stationary.')\n",
" print(f' Significance Level = {signif}')\n",
" print(f' Test Statistic = {output[\"test_statistic\"]}')\n",
" print(f' No. Lags Chosen = {output[\"n_lags\"]}')\n",
"\n",
" for key,val in r[4].items():\n",
" print(f' Critical value {adjust(key)} = {round(val, 3)}')\n",
"\n",
" if p_value <= signif:\n",
" print(f\" => P-Value = {p_value}. Rejecting Null Hypothesis.\")\n",
" print(f\" => Series is Stationary.\")\n",
" else:\n",
" print(f\" => P-Value = {p_value}. Weak evidence to reject the Null Hypothesis.\")\n",
" print(f\" => Series is Non-Stationary.\")\n",
"\n",
"for name, column in df_train.items():\n",
" adfuller_test(column, name=name)\n",
" print('\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LQtBiTbtXkVT"
},
"source": [
"### Since the series is non stationary we will perform differencing and run the ADF test again\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "896PtNX7XkVT"
},
"outputs": [],
"source": [
"df_differenced = df_train.diff().dropna()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "TpxJOgXQXkVT"
},
"outputs": [],
"source": [
"for name, column in df_differenced.items():\n",
" adfuller_test(column, name=name)\n",
" print('\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TI5b4acLXkVT"
},
"source": [
"### Selecting Lag Order (p) for VAR model\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_PMFSk73XkVU"
},
"outputs": [],
"source": [
"model = VAR(df_differenced)\n",
"for i in [1,2,3,4,5,6,7,8,9]:\n",
" result = model.fit(i)\n",
" print('Lag Order =', i)\n",
" print('AIC : ', result.aic)\n",
" print('BIC : ', result.bic)\n",
" print('FPE : ', result.fpe)\n",
" print('HQIC: ', result.hqic, '\\n')\n",
"\n",
"x = model.select_order(maxlags=12)\n",
"x.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PEIcc2ijXkVU"
},
"source": [
"## Model Training\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "n4JAkfpZXkVU"
},
"outputs": [],
"source": [
"model_fitted = model.fit(6)\n",
"model_fitted.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GnKuEG78XkVU"
},
"source": [
"## Durbin Watson Test\n",
"\n",
"The Durbin–Watson statistic is a test statistic used to detect the presence of autocorrelation at lag 1 in the residuals (prediction errors) from a regression analysis.\n",
"It is named after James Durbin and Geoffrey Watson.\n",
"The small sample distribution of this ratio was derived by John von Neumann (von Neumann, 1941).\n",
"Durbin and Watson (1950, 1951) applied this statistic to the residuals from least squares regressions, and developed bounds tests for the null hypothesis that the errors are serially uncorrelated against the alternative that they follow a first order autoregressive process.\n",
"Note that the distribution of this test statistic does not depend on the estimated regression coefficients and the variance of the errors.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "hUAiciYpXkVU"
},
"outputs": [],
"source": [
"out = durbin_watson(model_fitted.resid)\n",
"\n",
"for col, val in zip(df.columns, out):\n",
" print(col, ':', round(val, 2))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NxbohO3eXkVU"
},
"source": [
"### Forecasting\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jrcwq_mcXkVU"
},
"outputs": [],
"source": [
"# Get the lag order\n",
"lag_order = model_fitted.k_ar\n",
"print(lag_order)\n",
"\n",
"# Input data for forecasting\n",
"forecast_input = df_differenced.values[-lag_order:]\n",
"print(forecast_input)\n",
"\n",
"fc = model_fitted.forecast(y=forecast_input, steps=nobs)\n",
"df_forecast = pd.DataFrame(fc, index=df.index[-nobs:], columns=df.columns + '_1d')\n",
"df_forecast"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-35abzN2XkVV"
},
"source": [
"## Inverse the differencing\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2-720iuHXkVV"
},
"outputs": [],
"source": [
"def invert_transformation(df_train, df_forecast, second_diff=False):\n",
" df_fc = df_forecast.copy()\n",
" columns = df_train.columns\n",
" for col in columns:\n",
" # Roll back 2nd Diff\n",
" if second_diff:\n",
" df_fc[str(col)+'_1d'] = (df_train[col].iloc[-1]-df_train[col].iloc[-2]) + df_fc[str(col)+'_2d'].cumsum()\n",
" # Roll back 1st Diff\n",
" df_fc[str(col)+'_forecast'] = df_train[col].iloc[-1] + df_fc[str(col)+'_1d'].cumsum()\n",
" return df_fc\n",
"\n",
"df_results = invert_transformation(df_train, df_forecast, second_diff=False)\n",
"df_results.loc[:, ['adjclose_forecast', 'neg_forecast', 'pos_forecast', 'neu_forecast']]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "A1Gt4mpuXkVV"
},
"source": [
"## Plot Forcast\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "bXvGwhA1XkVV"
},
"outputs": [],
"source": [
"fig, axes = plt.subplots(nrows=len(df.columns), ncols=1, dpi=150, figsize=(10,10))\n",
"for i, (col,ax) in enumerate(zip(df.columns, axes.flatten())):\n",
" df_results[col+'_forecast'].plot(legend=True, ax=ax).autoscale(axis='x',tight=True)\n",
" df_test[col][-nobs:].plot(legend=True, ax=ax)\n",
" ax.set_title(col + \": Forecast vs Actuals\")\n",
" ax.xaxis.set_ticks_position('none')\n",
" ax.yaxis.set_ticks_position('none')\n",
" ax.spines[\"top\"].set_alpha(0)\n",
" ax.tick_params(labelsize=6)\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mPqMcnO9XkVV"
},
"source": [
"## Error of Forecast\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_ayTmFeTXkVV"
},
"outputs": [],
"source": [
"def forecast_accuracy(forecast, actual):\n",
" mape = np.mean(np.abs(forecast - actual)/np.abs(actual)) # MAPE\n",
" me = np.mean(forecast - actual) # ME\n",
" mae = np.mean(np.abs(forecast - actual)) # MAE\n",
" mpe = np.mean((forecast - actual)/actual) # MPE\n",
" rmse = np.mean((forecast - actual)**2)**.5 # RMSE\n",
" corr = np.corrcoef(forecast, actual)[0,1] # corr\n",
" mins = np.amin(np.hstack([forecast[:,None],\n",
" actual[:,None]]), axis=1)\n",
" maxs = np.amax(np.hstack([forecast[:,None],\n",
" actual[:,None]]), axis=1)\n",
" minmax = 1 - np.mean(mins/maxs) # minmax\n",
" return({'mape':mape, 'me':me, 'mae': mae,\n",
" 'mpe': mpe, 'rmse':rmse, 'corr':corr, 'minmax':minmax})\n",
"\n",
"print('Forecast Accuracy of: adjclose')\n",
"accuracy_prod = forecast_accuracy(df_results['adjclose_forecast'].values, df_test['adjclose'].values)\n",
"for k, v in accuracy_prod.items():\n",
" print(k, ': ', round(v,4))\n",
"\n",
"print('\\nForecast Accuracy of: pos')\n",
"accuracy_prod = forecast_accuracy(df_results['pos_forecast'].values, df_test['pos'].values)\n",
"for k, v in accuracy_prod.items():\n",
" print(k, ': ', round(v,4))\n",
"\n",
"print('\\nForecast Accuracy of: neg')\n",
"accuracy_prod = forecast_accuracy(df_results['neg_forecast'].values, df_test['neg'].values)\n",
"for k, v in accuracy_prod.items():\n",
" print(k, ': ', round(v,4))\n",
"\n",
"print('\\nForecast Accuracy of: neu')\n",
"accuracy_prod = forecast_accuracy(df_results['neu_forecast'].values, df_test['neu'].values)\n",
"for k, v in accuracy_prod.items():\n",
" print(k, ': ', round(v,4))"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|