Spaces:
Sleeping
Sleeping
File size: 9,516 Bytes
4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 30fef7a 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 30fef7a 69061f2 4bd9fc2 69061f2 d3c927d 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 d3c927d 4bd9fc2 69061f2 4bd9fc2 d3c927d 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 4bd9fc2 69061f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
import tempfile
from datetime import datetime
from pathlib import Path
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download
# ------------------------------------------------------------
# Cloud‑friendly Q/A preference rater for **Hugging Face Spaces**
# ------------------------------------------------------------
# This version swaps local CSV persistence for a tiny remote‑dataset
# workflow that works on Spaces:
# • Ratings are stored in (and loaded from) a lightweight **dataset
# repo** on the Hugging Face Hub – no local file system required.
# • The dataset repo is set via the `RATINGS_REPO` env‑var.
# • You must pass a write‑enabled token (env‑var `HF_TOKEN`) that has
# `write` permission on that dataset.
#
# Quick setup guide
# -----------------
# 1. Create a dataset repository to hold the ratings file, e.g.:
# https://huggingface.co/datasets/<org>/qa‑rater‑data
# 2. Inside **Space Settings ▸ Secrets**, add:
# • `RATINGS_REPO` → <org>/qa‑rater‑data
# • `HF_TOKEN` → a token with *Write* access to that repo
# 3. Add `huggingface‑hub` to your `requirements.txt` or
# `pip install huggingface‑hub` locally.
# 4. Deploy / push your updated Space – ratings will now persist in
# the dataset repo instead of the Space’s ephemeral storage.
# ------------------------------------------------------------
# -----------------------------------------------------------------------------
# Configuration – constants & styling
# -----------------------------------------------------------------------------
DATA_PATH = "human_judgement/selected_samples.json"
RATINGS_FILE = "human_judgement/human_judgement.csv" # Name *inside* the dataset repo
RATINGS_REPO = os.getenv("RATINGS_REPO") # e.g. "org/qa‑rater‑data"
HF_TOKEN = os.getenv("HF_TOKEN") # write token for that repo
MAX_HEIGHT_PX = 400 # Max visible height for answer Markdown blocks
api = HfApi(token=HF_TOKEN) if HF_TOKEN else None
# -----------------------------------------------------------------------------
# Helper functions – data I/O
# -----------------------------------------------------------------------------
def load_data(path: str = DATA_PATH) -> pd.DataFrame:
"""Local read for the static Q/A CSV bundled with the Space repo."""
if not os.path.exists(path):
raise FileNotFoundError(
f"Could not find data file at {path} – did you upload it?"
)
df = pd.read_json(path, lines=True)
required = {"question", "response1", "response2"}
if not required.issubset(df.columns):
raise ValueError(f"CSV must contain columns: {', '.join(required)}")
return df
# ---------- Rating persistence helpers ---------------------------------------
def _download_remote_ratings() -> Path | None:
"""Try to fetch the current ratings file from the Hub; returns path or None."""
if not RATINGS_REPO:
return None
try:
return Path(
hf_hub_download(
repo_id=RATINGS_REPO,
filename=RATINGS_FILE,
repo_type="dataset",
token=HF_TOKEN,
cache_dir=tempfile.gettempdir(),
)
)
except Exception:
# File/repo may not exist yet – caller will create empty DF.
return None
def load_ratings() -> pd.DataFrame:
"""Return ratings DataFrame from remote repo (or empty if none)."""
remote = _download_remote_ratings()
if remote and remote.exists():
return pd.read_csv(remote)
return pd.DataFrame(columns=["user_id", "row_index", "choice", "timestamp"])
def _upload_remote_ratings(df: pd.DataFrame):
"""Upload CSV to the dataset repo with a commit per save."""
if not (RATINGS_REPO and api):
# Running locally (dev) – save to a temp file for inspection.
df.to_csv(RATINGS_FILE, index=False)
return
with tempfile.TemporaryDirectory() as tmpdir:
csv_path = Path(tmpdir) / RATINGS_FILE
csv_path.parent.mkdir(parents=True, exist_ok=True)
df.to_csv(csv_path, index=False)
api.upload_file(
path_or_fileobj=str(csv_path),
path_in_repo=RATINGS_FILE,
repo_id=RATINGS_REPO,
repo_type="dataset",
commit_message="Add/Update rating",
)
def save_rating(user_id: str, row_index: int, choice: int):
"""Append a rating (deduplicated) and push to the Hub."""
ratings = load_ratings()
duplicate = (ratings.user_id == user_id) & (ratings.row_index == row_index)
if duplicate.any():
return # already stored
new_entry = {
"user_id": user_id,
"row_index": row_index,
"choice": choice,
"timestamp": datetime.utcnow().isoformat(),
}
ratings = pd.concat([ratings, pd.DataFrame([new_entry])], ignore_index=True)
_upload_remote_ratings(ratings)
def get_next_unrated(df: pd.DataFrame, ratings: pd.DataFrame, user_id: str):
rated = ratings.loc[ratings.user_id == user_id, "row_index"].tolist()
unrated = df[~df.index.isin(rated)]
if unrated.empty:
return None
row = unrated.iloc[0]
return row.name, row.question, row.response1, row.response2
# -----------------------------------------------------------------------------
# Gradio callbacks
# -----------------------------------------------------------------------------
def start_or_resume(user_id: str, state_df):
if not user_id.strip():
return (
gr.update(value=user_id, visible=True),
gr.update(visible=False), # eval_col
gr.update(visible=False), # submit_btn
"",
"",
"",
"", # q, a1, a2, idx
"Please enter a non-empty identifier to begin.",
)
ratings = load_ratings()
record = get_next_unrated(state_df, ratings, user_id)
if record is None:
return (
gr.update(value=user_id, visible=True),
gr.update(visible=False),
gr.update(visible=False),
"",
"",
"",
"",
"🎉 You have evaluated every item – thank you!",
)
idx, q, a1, a2 = record
return (
gr.update(value=user_id, visible=True),
gr.update(visible=True), # eval_col
gr.update(visible=True), # submit_btn
"**" + q + "**",
a1,
a2,
str(idx),
"",
)
def submit_preference(user_id: str, row_idx_str: str, choice: str, state_df):
if choice not in {"answer1", "answer2"}:
return (
"",
"",
"",
"",
"Please choose either Answer 1 or Answer 2 before submitting.",
)
row_idx = int(row_idx_str)
save_rating(user_id, row_idx, 1 if choice == "answer1" else 2)
ratings = load_ratings()
record = get_next_unrated(state_df, ratings, user_id)
if record is None:
return "", "", "", "", "🎉 You have evaluated every item – thank you!"
idx, q, a1, a2 = record
return "**" + q + "**", a1, a2, str(idx), ""
# -----------------------------------------------------------------------------
# Build Gradio interface
# -----------------------------------------------------------------------------
def build_demo():
df = load_data()
# CSS to constrain very tall answers
overflow_css = f"""
<style>
.answerbox {{
max-height: {MAX_HEIGHT_PX}px;
overflow-y: auto;
white-space: pre-wrap;
}}
</style>
"""
with gr.Blocks(title="Question/Answer Preference Rater") as demo:
gr.HTML(overflow_css)
gr.Markdown(
"""# Q/A Preference Rater\nEnter your identifier below to start or resume. For every question, select which answer you prefer. Your progress is saved automatically so you can return at any time using the same identifier."""
)
state_df = gr.State(df)
state_row_idx = gr.State("")
# Identifier input
id_input = gr.Textbox(label="User Identifier", placeholder="e.g. alice")
start_btn = gr.Button("Start / Resume")
info_md = gr.Markdown("")
# Evaluation widgets
with gr.Column(visible=False) as eval_col:
question_md = gr.Markdown("")
with gr.Row():
answer1_md = gr.Markdown(label="Answer 1", elem_classes=["answerbox"])
answer2_md = gr.Markdown(label="Answer 2", elem_classes=["answerbox"])
choice_radio = gr.Radio(
["answer1", "answer2"], label="Which answer do you prefer?"
)
submit_btn = gr.Button("Submit Preference", visible=False)
# Callbacks wiring
start_btn.click(
fn=start_or_resume,
inputs=[id_input, state_df],
outputs=[
id_input,
eval_col,
submit_btn,
question_md,
answer1_md,
answer2_md,
state_row_idx,
info_md,
],
)
submit_btn.click(
fn=submit_preference,
inputs=[id_input, state_row_idx, choice_radio, state_df],
outputs=[question_md, answer1_md, answer2_md, state_row_idx, info_md],
)
return demo
if __name__ == "__main__":
build_demo().launch()
|