Spaces:
Runtime error
Runtime error
File size: 4,588 Bytes
d55dccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
from pathlib import Path
import PIL
# External packages
import streamlit as st
# Local Modules
import settings
import helper
import test_api.algorithm as algorithm
import multiprocessing
import time
import requests
import socketio
import base64
import io
from PIL import Image
st.set_page_config(
page_title="YOLOv8 目标检测",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded" # 或者 "collapsed"
)
# # Main page heading
st.title("YOLOv8 目标检测")
# Sidebar
st.sidebar.header("模型配置")
# Model Options
model_type = st.sidebar.selectbox(
"任务选择", ['检测', '分割',"越界检测","行为检测"])
confidence = float(st.sidebar.slider(
"选择模型Confidence", 25, 100, 40)) / 100
# Selecting Detection Or Segmentation
if model_type == '检测':
model_path = Path(settings.DETECTION_MODEL)
elif model_type == '分割':
model_path = Path(settings.SEGMENTATION_MODEL)
elif model_type == "越界检测":
model_path = Path(settings.SEGMENTATION_MODEL)
elif model_type == "行为检测":
model_path = Path(settings.SEGMENTATION_MODEL)
# Load Pre-trained ML Model
try:
model = helper.load_model(model_path)
except Exception as ex:
st.error(f"Unable to load model. Check the specified path: {model_path}")
st.error(ex)
st.sidebar.header("图像/视频 配置")
source_radio = st.sidebar.radio(
"选择来源", settings.SOURCES_LIST)
source_img = None
# If image is selected
if source_radio == settings.IMAGE:
source_img = st.sidebar.file_uploader(
"选择一张图像...", type=("jpg", "jpeg", "png", 'bmp', 'webp'))
col1, col2 = st.columns(2)
with col1:
try:
if source_img is None:
default_image_path = str(settings.DEFAULT_IMAGE)
default_image = PIL.Image.open(default_image_path)
st.image(default_image_path, caption="默认图像",
use_column_width=True)
else:
uploaded_image = PIL.Image.open(source_img)
st.image(source_img, caption="Uploaded Image",
use_column_width=True)
except Exception as ex:
st.error("Error occurred while opening the image.")
st.error(ex)
with col2:
if source_img is None:
default_detected_image_path = str(settings.DEFAULT_DETECT_IMAGE)
default_detected_image = PIL.Image.open(
default_detected_image_path)
st.image(default_detected_image_path, caption='检测图像',
use_column_width=True)
else:
if st.sidebar.button('检测目标'):
res = model.predict(uploaded_image,
conf=confidence
)
boxes = res[0].boxes
res_plotted = res[0].plot()[:, :, ::-1]
st.image(res_plotted, caption='Detected Image',
use_column_width=True)
try:
with st.expander("Detection Results"):
for box in boxes:
st.write(box.data)
except Exception as ex:
# st.write(ex)
st.write("No image is uploaded yet!")
elif source_radio == settings.RTSP:
if model_type == '检测':
src ={
"video_url": "http://127.0.0.1:8999/live/test.live.flv"
}
start = st.sidebar.button('检测目标')
stop = st.sidebar.button('停止')
if start:
response = requests.post('http://192.168.110.232:7555/analyzerControlAdd', json=src)
print(response.text)
elif model_type == '分割':
yolov8=algorithm.YoloV8Detection()
yolov8.play_rtsp_stream(confidence,model,display_video=True)
elif model_type == "越界检测":
yolov8_b=algorithm.BoundaryDetection()
yolov8_b.play_rtsp_stream(confidence,model,display_video=True)
#helper.play_rtsp_stream(confidence, model)
else:
st.error("Please select a valid source type!")
# 创建 SocketIO 实例
sio = socketio.Client()
# 连接到 WebSocket 服务器
sio.connect('http://192.168.110.232:7555')
# 接收帧数据并显示
@sio.on('frame_data')
def handle_frame_data(data):
image_bytes = base64.b64decode(data['image'])
image = Image.open(io.BytesIO(image_bytes))
st.image(image, caption='Real-time Detection', channels='BGR')
# 等待连接断开
st.text('Waiting for real-time updates...')
sio.wait() |