File size: 12,883 Bytes
fd00255
4e3e87f
 
 
fd00255
 
 
4e3e87f
fd00255
4e3e87f
17e6b36
1f14b39
dccf04b
d3f45c6
12deb67
4e3e87f
 
 
 
 
 
f829582
fd00255
4e3e87f
fd00255
 
 
cf9984f
fd00255
cf9984f
 
 
 
 
 
 
 
 
fd00255
 
cf9984f
 
 
 
 
fd00255
4e3e87f
 
 
 
 
 
 
 
 
 
 
 
fd00255
603f92a
fd00255
603f92a
 
 
 
 
fd00255
 
603f92a
 
 
 
fd00255
 
603f92a
fd00255
603f92a
 
 
 
 
 
 
 
 
 
fd00255
 
4e3e87f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd00255
 
4e3e87f
 
 
 
 
fd00255
 
4e3e87f
 
 
 
 
 
fd00255
4e3e87f
 
 
 
fd00255
 
 
4e3e87f
fd00255
 
4e3e87f
fd00255
 
4e3e87f
 
 
 
fd00255
 
 
055ba7e
fd00255
 
 
 
 
 
 
4e3e87f
fd00255
055ba7e
fd00255
 
 
055ba7e
fd00255
 
 
055ba7e
fd00255
 
 
 
055ba7e
 
 
fd00255
 
4e3e87f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd00255
4e3e87f
 
fd00255
 
 
4e3e87f
 
 
fd00255
4e3e87f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dccf04b
4e3e87f
 
 
 
 
 
 
 
 
 
 
7bcd511
d3f45c6
 
 
27ffbc0
 
4e3e87f
 
dccf04b
4e3e87f
 
 
 
17e6b36
f829582
 
4e3e87f
 
dccf04b
17e6b36
 
 
4e3e87f
 
 
 
 
 
dccf04b
4e3e87f
 
ada74dc
 
 
dccf04b
 
 
ada74dc
dccf04b
ada74dc
 
 
 
6e8f07c
ada74dc
 
4e3e87f
ada74dc
 
4e3e87f
ada74dc
 
 
dccf04b
fd00255
 
dccf04b
4e3e87f
 
ada74dc
 
fd00255
 
 
 
4e3e87f
efe16f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import os
from types import SimpleNamespace
import random
from torchvision.utils import save_image
import gradio as gr
import numpy as np
import io
import tempfile  # Importar tempfile
import math

# Aseg煤rate de que las funciones necesarias est茅n definidas (si no lo est谩n ya)
def resize(img, size):
    return F.interpolate(img, size=size, mode='bilinear', align_corners=False)

def denormalize(x):
    return (x + 1) / 2  # Valores en [0, 1]

# Definici贸n de las clases de los modelos (Generator, StyleEncoder, MappingNetwork, ResBlk, AdaIN, AdainResBlk)
class ResBlk(nn.Module):
    def __init__(self, dim_in, dim_out, normalize=False, downsample=False):
        super().__init__()
        self.normalize = normalize
        self.downsample = downsample
        self.main = nn.Sequential(
            nn.Conv2d(dim_in, dim_out, 3, 1, 1),
            nn.InstanceNorm2d(dim_out, affine=True) if normalize else nn.Identity(),
            nn.ReLU(inplace=True),
            nn.Conv2d(dim_out, dim_out, 3, 1, 1),
            nn.InstanceNorm2d(dim_out, affine=True) if normalize else nn.Identity()
        )
        self.downsample_layer = nn.AvgPool2d(2) if downsample else nn.Identity()
        self.skip = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)

    def forward(self, x):
        out = self.main(x)
        out = self.downsample_layer(out)
        skip = self.skip(x)
        skip = self.downsample_layer(skip)
        return (out + skip) / math.sqrt(2)

class AdaIN(nn.Module):
    def __init__(self, num_features, style_dim):
        super(AdaIN, self).__init__()
        self.fc = nn.Linear(style_dim, num_features * 2)

    def forward(self, x, s):
        h = self.fc(s)
        gamma, beta = torch.chunk(h, chunks=2, dim=1)
        gamma = gamma.unsqueeze(2).unsqueeze(3)
        beta = beta.unsqueeze(2).unsqueeze(3)
        return (1 + gamma) * x + beta

class AdainResBlk(nn.Module):
    def __init__(self, dim_in, dim_out, style_dim=64, w_hpf=1, upsample=False):
        super().__init__()
        self.upsample = upsample
        self.w_hpf = w_hpf
        self.norm1 = AdaIN(dim_in, style_dim)
        self.norm2 = AdaIN(dim_out, style_dim)
        self.actv = nn.LeakyReLU(0.2)
        self.conv1 = nn.Conv2d(dim_in, dim_out, 3, 1, 1)
        self.conv2 = nn.Conv2d(dim_out, dim_out, 3, 1, 1)
        if dim_in != dim_out:
            self.skip = nn.Conv2d(dim_in, dim_out, 1, 1, 0)
        else:
            self.skip = nn.Identity()

    def forward(self, x, s):
        x_orig = x
        if self.upsample:
            x = F.interpolate(x, scale_factor=2, mode='nearest')
            x_orig = F.interpolate(x_orig, scale_factor=2, mode='nearest')
        h = self.norm1(x, s)
        h = self.actv(h)
        h = self.conv1(h)
        h = self.norm2(h, s)
        h = self.actv(h)
        h = self.conv2(h)
        skip = self.skip(x_orig)
        out = (h + skip) / math.sqrt(2)
        return out

class Generator(nn.Module):
    def __init__(self, img_size=256, style_dim=64, max_conv_dim=512):
        super().__init__()
        dim_in = 64
        blocks = []
        blocks += [nn.Conv2d(3, dim_in, 3, 1, 1)]
        repeat_num = int(np.log2(img_size)) - 4
        for _ in range(repeat_num):
            dim_out = min(dim_in*2, max_conv_dim)
            blocks += [ResBlk(dim_in, dim_out, normalize=True, downsample=True)]
            dim_in = dim_out
        self.encode = nn.Sequential(*blocks)
        self.decode = nn.ModuleList()
        for _ in range(repeat_num):
            dim_out = dim_in // 2
            self.decode += [AdainResBlk(dim_in, dim_out, style_dim, upsample=True)]
            dim_in = dim_out
        self.to_rgb = nn.Sequential(
            nn.InstanceNorm2d(dim_in, affine=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(dim_in, 3, 1, 1, 0)
        )

    def forward(self, x, s):
        x = self.encode(x)
        for block in self.decode:
            x = block(x, s)
        out = self.to_rgb(x)
        return out

class MappingNetwork(nn.Module):
    def __init__(self, latent_dim=16, style_dim=64, num_domains=2, hidden_dim=512):
        super(MappingNetwork, self).__init__()
        layers = [
            nn.Linear(latent_dim, hidden_dim),
            nn.ReLU()
        ]
        for _ in range(3):
            layers += [
                nn.Linear(hidden_dim, hidden_dim),
                nn.ReLU()
            ]
        self.shared = nn.Sequential(*layers)
        self.unshared = nn.ModuleList()
        for _ in range(num_domains):
            self.unshared.append(nn.Linear(hidden_dim, style_dim))

    def forward(self, z, y):
        h = self.shared(z)
        out = []
        for layer in self.unshared:
            out.append(layer(h))
        out = torch.stack(out, dim=1)
        idx = torch.arange(y.size(0)).to(y.device)
        s = out[idx, y]
        return s

class StyleEncoder(nn.Module):
    def __init__(self, img_size=256, style_dim=64, num_domains=2, max_conv_dim=512):
        super().__init__()
        dim_in = 64
        blocks = []
        blocks += [nn.Conv2d(3, dim_in, 3, 1, 1)]
        repeat_num = int(np.log2(img_size)) - 2
        for _ in range(repeat_num):
            dim_out = min(dim_in*2, max_conv_dim)
            blocks += [ResBlk(dim_in, dim_out, normalize=True, downsample=True)]
            dim_in = dim_out
        blocks += [nn.LeakyReLU(0.2)]
        self.shared = nn.Sequential(*blocks)
        self.unshared = nn.ModuleList()
        for _ in range(num_domains):
            self.unshared += [nn.Linear(dim_in, style_dim)]

    def forward(self, x, y):
        h = self.shared(x)
        h = F.adaptive_avg_pool2d(h, (1,1))
        h = h.view(h.size(0), -1)
        out = []
        for layer in self.unshared:
            out += [layer(h)]
        out = torch.stack(out, dim=1)
        idx = torch.arange(y.size(0)).to(y.device)
        s = out[idx, y]
        return s

# Clase para cargar imagenes
class ImageFolder(Dataset):
    def __init__(self, root, transform, mode, which='source'):
        self.transform = transform
        self.paths = []
        domains = sorted(os.listdir(root))
        for domain in domains:
            if os.path.isdir(os.path.join(root, domain)):
                files = os.listdir(os.path.join(root, domain))
                files = [os.path.join(root, domain, f) for f in files]
                self.paths += [(f, domains.index(domain)) for f in files]
        if mode == 'train' and which == 'reference':
            random.shuffle(self.paths)

    def __getitem__(self, index):
        path, label = self.paths[index]
        img = Image.open(path).convert('RGB')
        return self.transform(img), label

    def __len__(self):
        return len(self.paths)

# Funciones para obtener los data loaders
def get_transform(img_size, mode='train', prob=0.5):
    transform = []
    transform.append(transforms.Resize((img_size, img_size)))
    if mode == 'train':
        transform.append(transforms.RandomHorizontalFlip())
        transform.append(transforms.RandomApply([
            transforms.RandomResizedCrop(img_size, scale=(0.8, 1.0))
        ], p=prob))
    transform.append(transforms.ToTensor())
    transform.append(transforms.Normalize(mean=[0.5, 0.5, 0.5],
                                         std=[0.5, 0.5, 0.5]))
    return transforms.Compose(transform)

def get_train_loader(root, which='source', img_size=256, batch_size=8, prob=0.5, num_workers=4):
    transform = transforms.Compose([
        transforms.Resize((img_size, img_size)),
        transforms.RandomHorizontalFlip(p=prob),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    ])
    dataset = ImageFolder(root=root, transform=transform, mode=which)
    loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, drop_last=True)
    return loader

def get_test_loader(root, img_size=256, batch_size=8, shuffle=False, num_workers=4, mode='reference'):
    transform = transforms.Compose([
        transforms.Resize((img_size, img_size)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    ])
    dataset = ImageFolder(root=root, transform=transform, mode=mode)
    loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, drop_last=False)
    return loader

# Clase Solver (adaptada para la inferencia)
class Solver(object):
    def __init__(self, args):
        self.args = args
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

        # Definir los modelos
        self.G = Generator(args.img_size, args.style_dim).to(self.device)
        self.M = MappingNetwork(args.latent_dim, args.style_dim, args.num_domains).to(self.device)
        self.S = StyleEncoder(args.img_size, args.style_dim, args.num_domains).to(self.device)

    def load_checkpoint(self, checkpoint_path):
        try:
            checkpoint = torch.load(checkpoint_path, map_location=self.device)
            self.G.load_state_dict(checkpoint['generator'])
            self.M.load_state_dict(checkpoint['mapping_network'])
            self.S.load_state_dict(checkpoint['style_encoder'])
            print(f"Checkpoint cargado exitosamente desde {checkpoint_path}.")
        except FileNotFoundError:
            print(f"Error: No se encontr贸 el checkpoint en {checkpoint_path}.")
            raise FileNotFoundError(f"No se encontr贸 el checkpoint en {checkpoint_path}")
        except Exception as e:
            print(f"Error al cargar el checkpoint: {e}.")
            raise Exception(f"Error al cargar el checkpoint: {e}")

    def transfer_style(self, source_image, reference_image):
        # Aseg煤rate de que los modelos est茅n en modo de evaluaci贸n
        self.G.eval()
        self.S.eval()

        with torch.no_grad():
            # Preprocesar las im谩genes de entrada
            transform = transforms.Compose([
                transforms.Resize((self.args.img_size, self.args.img_size)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
            ])
            # Convertir a PIL image antes de la transformaci贸n
            source_image_pil = Image.fromarray(source_image)
            reference_image_pil = Image.fromarray(reference_image)

            source_image = transform(source_image_pil).unsqueeze(0).to(self.device)
            reference_image = transform(reference_image_pil).unsqueeze(0).to(self.device)

            # Codificar el estilo de la imagen de referencia
            s_ref = self.S(reference_image, torch.tensor([0]).to(self.device))

            # Generar la imagen con el estilo transferido
            generated_image = self.G(source_image, s_ref)

            # Denormalizar la imagen para mostrarla en la interfaz
            generated_image = denormalize(generated_image.squeeze(0)).cpu()
            return (generated_image * 255).clamp(0, 255).byte().permute(1, 2, 0).numpy() # Convertir a NumPy y a rango v谩lido

# Funci贸n principal para la inferencia
def main(source_image, reference_image, checkpoint_path, args):
    if source_image is None or reference_image is None:
        raise gr.Error("Por favor, proporciona ambas im谩genes (fuente y referencia).")

    # Crear el solver
    solver = Solver(args)
    # Cargar el checkpoint
    solver.load_checkpoint(checkpoint_path)

    # Realizar la transferencia de estilo
    generated_image = solver.transfer_style(source_image, reference_image)
    return generated_image

def gradio_interface():
    # Definir los argumentos (ajustados para la inferencia)
    args = SimpleNamespace(
        img_size=128,
        num_domains=3,
        latent_dim=16,
        style_dim=64,
        num_workers=0,
        seed=8365,
    )

    # Ruta al checkpoint
    checkpoint_path = "iter/27000_nets_ema.ckpt"

    # Crear la interfaz de Gradio
    inputs = [
        gr.Image(label="Source Image (Car to change style)"),
        gr.Image(label="Reference Image (Style to transfer)"),
    ]
    outputs = gr.Image(label="Generated Image (Car with transferred style)")

    title = "AutoStyleGAN: Car Style Transfer"
    description = "Transfer the style of one car to another. Upload a source car image and a reference car image."

    iface = gr.Interface(
        fn=lambda source_image, reference_image: main(source_image, reference_image, checkpoint_path, args),
        inputs=inputs,
        outputs=outputs,
        title=title,
        description=description,
    )
    return iface

if __name__ == '__main__':
    iface = gradio_interface()
    iface.launch(share=True)