File size: 2,223 Bytes
73cdc6b
9dad51b
 
49cc9c5
9dad51b
 
 
6321de9
 
9f2a90c
73cdc6b
9dad51b
a7c96df
9dad51b
49cc9c5
647872d
9dad51b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f2a90c
9dad51b
9f2a90c
307dfae
 
36f0086
9dad51b
 
 
 
a7c96df
9dad51b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edf39fd
a7c96df
49e025c
9dad51b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import streamlit as st
import pandas as pd
import bm25s
from bm25s.hf import BM25HF
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.docstore.document import Document
import torch
import os
from huggingface_hub import login
from langchain_groq import ChatGroq


@st.cache_resource
def load_data():
    retriever = BM25HF.load_from_hub(
    "tien314/hscode8", load_corpus=True, mmap=True)
    return retriever

def load_model():
    prompt = ChatPromptTemplate.from_messages([
        HumanMessagePromptTemplate.from_template(
        f"""
        Extract the appropriate 8-digit HS Code base on the product description and retrieved document by thoroughly analyzing its details and utilizing a reliable and up-to-date HS Code database for accurate results.
        Only return the HS Code as a 8-digit number .
        Example: 1234567878
        Context: {{context}}
        Description: {{description}}
        Answer:
        """
        )
    ])
    

    #device = "cuda" if torch.cuda.is_available() else "cpu"
    
    #llm = OllamaLLM(model="gemma2", temperature=0, device=device)
    #api_key = "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"
    api_key = "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"
    llm = ChatGroq(model = "gemma2-9b-it", temperature = 0,api_key = api_key)
    chain = prompt|llm
    return chain

def process_input(sentence):
    docs, _ = st.session_state.retriever.retrieve(bm25s.tokenize(sentence), k=15)
    documents =[]
    for doc in docs[0]:
        documents.append(Document(doc['text'])) 
    return documents
    
if 'retriever' not in st.session_state:
    st.session_state.retriever = None

if 'chain' not in st.session_state:
    st.session_state.chain = None
    
if st.session_state.retriever is None:
    st.session_state.retriever = load_data()

if st.session_state.chain is None:
    st.session_state.chain = load_model()
    
sentence = st.text_input("please enter description:")

if sentence !='':
    documents = process_input(sentence)
    #st.write(documents)
    hscode = st.session_state.chain.invoke({'context': documents,'description':sentence})
    st.write("answer:",hscode.content)