Spaces:
Sleeping
Sleeping
File size: 25,620 Bytes
c2295ac 77456ce c2295ac 77456ce c2295ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
# MVP build for “Data Curation Workbench” (Hugging Face Space)
## 0) MVP Goal & Scope
**Goal:** Let a signed‑in user upload **D₀** (or reference a Hub dataset), pick a **model** + **metrics**, choose candidate datasets **{D₁…Dₙ}**, launch **small‑scale fine‑tunes/evals** as detached **Jobs**, and view:
* per‑run metrics (loss / F1 / Exact‑Match),
* a **scaling‑law** plot, and
* a table ranking which Dₖ helps the most,
* with all artifacts saved to a results dataset or Space storage.
**Out of scope (for MVP):**
* Multi‑GPU distributed training, multi‑task mixing UI, complex hyperparam sweeps.
* Non‑text tasks.
---
## 1) Repository Layout
Create these files/folders:
```
.
├─ README.md
├─ PLAN.md # this file
├─ app.py # Gradio UI + Job submission + status polling
├─ requirements.txt
├─ catalog/
│ └─ candidates.json # curated {D₁…Dₙ}
├─ utils/
│ ├─ hub.py # upload to Hub, results repo helpers
│ ├─ data.py # dataset loading/mixing/helpers
│ └─ plotting.py # scaling plot helper
└─ jobs/
├─ run_experiment.py # orchestrates one D₀ ⊕ Dₖ experiment (multi sizes)
├─ train.py # PEFT/QLoRA SFT
├─ eval.py # metrics (loss/F1/Exact-Match)
└─ scaling.py # fit & predict scaling law
```
---
## 2) Configuration & Env
**Space Settings → Secrets/Variables (already done for step 2, list here for reference):**
* `SERVICE_HF_TOKEN` (secret, write‑scoped; used to create/push results datasets)
* `RESULTS_REPO` (optional, like `your-org/curation-results`; if absent, create on first run)
* `HF_HOME=/data/.huggingface` (variable) **if** Persistent Storage is enabled
* `PERSIST_DIR=/data` (variable) **if** Persistent Storage is enabled
**NOTE: RESULTS_REPO is absent now; Persistent Storage is NOT enabled yet.**
**Runtime assumptions:**
* Space uses **Gradio SDK**.
* Jobs will request a **GPU flavor** (e.g., `a10g-small`) for training; UI itself can run on CPU.
**Currently the Space Hardware is ZeroGPU.**
---
## 3) Dependencies
`requirements.txt`
```
gradio>=5
huggingface_hub>=0.25
datasets>=2.20
transformers>=4.44
peft>=0.13
trl>=0.9
evaluate>=0.4
scikit-learn>=1.5
numpy>=1.26
pandas>=2.2
matplotlib>=3.8
```
---
## 4) Candidate Datasets Catalog
`catalog/candidates.json` (minimal starter; adjust to your domain)
```json
[
{
"id": "glue/sst2",
"task": "classification",
"license": "open",
"size_hint": "67k",
"columns": {"text": "sentence", "label": "label"},
"labels": ["negative","positive"]
},
{
"id": "ag_news",
"task": "classification",
"license": "cc-by-3.0",
"size_hint": "120k",
"columns": {"text": "text", "label": "label"},
"labels": ["World","Sports","Business","Sci/Tech"]
},
{
"id": "squad",
"task": "qa",
"license": "cc-by-sa-4.0",
"size_hint": "100k",
"columns": {"question": "question", "context": "context", "answers": "answers"}
}
]
```
> For MVP, support **classification** and **extractive QA**. The `columns` mapping lets us normalize heterogeneous datasets without complex UI.
---
## 5) UI — `app.py` (Gradio)
### 5.1 Features
* **LoginButton** (OAuth) → captures `gr.OAuthProfile` and `gr.OAuthToken`.
* **D₀ input**: either upload files (`.jsonl/.csv/.parquet/.zip`) or provide a **Hub dataset id**.
* **Model** dropdown: start with `meta-llama/Llama-3.1-8B-Instruct`.
* **Task** selector (classification or QA). (MVP: single task per run.)
* **Benchmark/test set**: upload small test data or provide Hub split.
* **Metrics** checkboxes: `loss`, `f1`, `exact_match` (show `exact_match` only for QA).
* **Candidate datasets**: multiselect from `candidates.json`.
* **Run experiments** button: submits **one Job per selected Dₖ**.
* **Jobs table**: ID, Dₖ, status, logs link, artifacts link.
* **Results view**: scaling plot + ranked table when jobs finish.
### 5.2 Implementation Sketch
* Parse OAuth token; we’ll prefer the user token for **reading gated models**, but use `SERVICE_HF_TOKEN` for **writing** artifacts.
* If user **uploads D₀**, compress if needed and push to a **private dataset repo** via `utils/hub.ensure_uploaded_dataset(...)`.
* Submit a **Job** per Dₖ with:
* command: `python jobs/run_experiment.py --model ... --d0 ... --dk ... --task ... --metrics ... --results_repo ...`
* `flavor="a10g-small"` (configurable)
* `timeout` (e.g., 7200 seconds)
* `env`: `HF_TOKEN` (read), `SERVICE_HF_TOKEN` (write), plus `RESULTS_REPO` if set.
* Store job metadata in a `gr.State` list; start a **poller** (every ~10–15s) to refresh status via `huggingface_hub.inspect_job(...)`.
* When a job completes, show a link to its artifacts (scaling plot, metrics JSON) and update the results table.
**Acceptance criteria**
* Launching a run queues N jobs (N = number of selected Dₖ).
* Status column transitions through “queued/running/completed/failed”.
* Clicking an artifacts link opens an image/json from results repo (or Space storage).
---
## 6) Hub Utilities — `utils/hub.py`
### Functions to implement
* `ensure_uploaded_dataset(upload_files, d0_dataset_id, user_token) -> str`
* If `d0_dataset_id` is provided, return it.
* Else create a **private dataset repo** under your org (e.g., `your-org/curation-upload-<uuid>`), upload files/folder, and return repo id.
* `ensure_results_repo(service_token, results_repo_env) -> str`
* If `RESULTS_REPO` is set, ensure it exists; else create `your-org/curation-results`.
* `push_artifacts(repo_id, local_dir, subdir) -> None`
* Upload a local folder (e.g., `artifacts/<job-id>/...`) to `repo_id/subdir`.
**Acceptance criteria**
* Uploading a small CSV/JSONL creates a private dataset and returns a valid repo id.
* Pushing artifacts creates/updates files in the results repo with versioned commits.
---
## 7) Data Helpers — `utils/data.py`
### Responsibilities
* Load D₀ and Dₖ from the Hub (and optional **test set**).
* Normalize columns using the `columns` mapping from `candidates.json` or a provided override.
* Build **mixtures** of D₀ ⊕ Dₖ at multiple sizes (e.g., `{10k, 20k, 40k}` examples).
* For **classification**: expect `{"text": str, "label": int}` after normalization.
For **QA**: expect `{"question": str, "context": str, "answers": {"text":[...], "answer_start":[...]}}`.
### API
```python
def load_dataset_normalized(repo_or_id, task, columns_map=None, split="train"):
"""Return a datasets.Dataset with normalized columns for the given task."""
...
def build_mixtures(d0_ds, dk_ds, sizes=[10_000, 20_000, 40_000], d0_ratio=0.5, seed=42):
"""Return dict: size -> datasets.Dataset of mixed examples (shuffled, repeat/trim as needed)."""
def load_benchmark(repo_or_id_or_path, task, split="validation"):
"""Return a small test set normalized for the chosen task."""
```
**Acceptance criteria**
* Given a known dataset id, `load_dataset_normalized(...)` returns columns as specified.
* `build_mixtures(...)` returns ≥2 sizes with the requested counts.
---
## 8) Plotting Helper — `utils/plotting.py`
### API
```python
def plot_scaling(sizes, y_values, y_label, out_path):
"""Save a simple matplotlib PNG (log-x) with points + fitted curve if provided."""
```
* Use matplotlib; one figure per plot; do not enforce custom colors/styles.
**Acceptance criteria**
* Calling `plot_scaling(...)` produces a PNG saved to `out_path` without errors.
---
## 9) Training — `jobs/train.py` (PEFT/QLoRA SFT)
**NOTE: Currently the Space Hardware is ZeroGPU. For testing purpose, the training part can be replaced by extremely small models.**
### Responsibilities
* Load model + tokenizer (e.g., `meta-llama/Llama-3.1-8B-Instruct`).
* Apply LoRA (or QLoRA).
* Tokenize dataset and run short SFT.
### API (sketch)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
from peft import LoraConfig, get_peft_model
from trl import SFTTrainer
def train_peft(model_id, train_ds, output_dir, max_steps=500, lr=2e-4, lora_r=8):
tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
base = AutoModelForCausalLM.from_pretrained(model_id)
peft_cfg = LoraConfig(r=lora_r, lora_alpha=16, lora_dropout=0.05, task_type="CAUSAL_LM")
model = get_peft_model(base, peft_cfg)
def format_example(ex):
# classification: concatenate prompt; QA: question + context formatting
# MVP: simple "<s>[INST] ... [/INST]" style or plain text target
return {"text": ex["text"]} # adjust per task
# Tokenization & SFTTrainer; keep it simple for MVP
tr_args = TrainingArguments(output_dir=output_dir, per_device_train_batch_size=4,
gradient_accumulation_steps=4, learning_rate=lr,
max_steps=max_steps, logging_steps=50, save_steps=0)
trainer = SFTTrainer(model=model, tokenizer=tok, train_dataset=train_ds,
dataset_text_field="text", args=tr_args)
trainer.train()
# Save adapter only
trainer.save_model(output_dir)
return output_dir
```
**Acceptance criteria**
* On a tiny dataset (few hundred samples), training completes and saves an adapter folder.
---
## 10) Evaluation — `jobs/eval.py`
### Responsibilities
* Run evaluation for the selected task using the fine‑tuned adapter.
* For **classification**: compute `loss` (optional) and `f1`.
* For **QA**: compute `exact_match` (and `f1` if you want both).
### API (sketch)
```python
import evaluate
import numpy as np
def eval_classification(model_id_or_path, test_ds):
# Use pipeline or model.generate + simple argmax classifier (MVP)
# Better: a small classification head; MVP keeps it simple.
f1 = evaluate.load("f1")
preds, refs = ..., ...
return {"f1": f1.compute(predictions=preds, references=refs)["f1"]}
def eval_qa(model_id_or_path, test_ds):
exact = evaluate.load("exact_match")
# MVP: heuristic span matching if using generative outputs;
# or reuse baseline SQuAD eval if test_ds has 'answers'.
em = exact.compute(predictions=preds, references=refs)["exact_match"]
return {"exact_match": em}
```
> **Note:** For MVP, inference can be slow. Keep test sets **small** (e.g., 500–1,000 examples) and batch where possible.
**Acceptance criteria**
* For a toy dataset, returns a metrics dict with expected keys.
---
## 11) Scaling Law — `jobs/scaling.py`
### Responsibilities
* Fit a simple power‑law over points `(size → metric)`.
* For “higher‑is‑better” metrics, convert to a pseudo‑loss (e.g., `1 - score`) during fitting if desired.
* Produce a **prediction** at a user‑defined large‑scale target (e.g., `N* = 200k` examples).
### API (sketch)
```python
import numpy as np
def fit_powerlaw(sizes, scores, higher_is_better=True):
sizes = np.asarray(sizes, float)
y = np.asarray(scores, float)
if higher_is_better:
# Fit to (1 - score) ~ b * N^{-alpha}
z = np.log(np.maximum(1e-9, 1 - y))
else:
# Direct loss scaling
z = np.log(np.maximum(1e-9, y))
x = np.log(sizes)
k, c = np.polyfit(x, z, 1) # z ≈ k*log N + c
alpha = -k; b = np.exp(c)
return {"alpha": float(alpha), "b": float(b)}
def predict_powerlaw(size, fit_params, higher_is_better=True):
alpha, b = fit_params["alpha"], fit_params["b"]
if higher_is_better:
loss_hat = b * (size ** (-alpha))
return float(1 - loss_hat)
return float(b * (size ** (-alpha)))
```
**Acceptance criteria**
* Given ≥2 points (prefer 3+), returns fit parameters and a plausible prediction.
* Combined with `utils/plotting.plot_scaling(...)`, writes a PNG with points + curve.
---
## 12) Experiment Orchestrator — `jobs/run_experiment.py`
### Responsibilities
* Parse CLI args: `--model`, `--task`, `--d0`, `--dk`, `--metrics ...`, `--sizes 10000 20000`, `--target_size 200000`, `--results_repo <id>`, `--job_id <uuid>`.
* Create working dirs: `artifacts/<job_id>/`.
* Load datasets (D₀, Dₖ), build mixtures for requested sizes.
* For each size:
1. run short **train** (adapter saved under `artifacts/<job_id>/adapters/size-<N>`),
2. run **eval** on the benchmark set → collect metrics.
* Fit **scaling** across sizes; produce:
* `metrics.json` (per‑size metrics, fit params, predicted large‑scale performance),
* `scaling.png` (plot).
* Push `artifacts/<job_id>/` to `results_repo` under `experiments/<user>/<job_id>/...` using `utils/hub.push_artifacts(...)`.
* Print a final JSON line to stdout with the artifacts path (UI can parse logs if needed).
### CLI Skeleton
```python
import argparse, json, os, uuid
from utils import hub, data, plotting
from jobs import train, eval as evalm, scaling
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--model", required=True)
ap.add_argument("--task", choices=["classification","qa"], required=True)
ap.add_argument("--d0", required=True)
ap.add_argument("--dk", required=True)
ap.add_argument("--metrics", nargs="+", default=["f1"])
ap.add_argument("--sizes", nargs="+", type=int, default=[10000, 20000, 40000])
ap.add_argument("--target_size", type=int, default=200000)
ap.add_argument("--results_repo", default=os.getenv("RESULTS_REPO",""))
ap.add_argument("--job_id", default=str(uuid.uuid4()))
args = ap.parse_args()
# Setup dirs
out_dir = os.path.abspath(os.path.join("artifacts", args.job_id))
os.makedirs(out_dir, exist_ok=True)
# Load datasets
d0 = data.load_dataset_normalized(args.d0, args.task)
dk = data.load_dataset_normalized(args.dk, args.task)
test = data.load_benchmark(args.d0, args.task, split="validation") # MVP: reuse D₀ val if none provided
# Build mixtures & run train/eval
per_size = []
for N in args.sizes:
mix = data.build_mixtures(d0, dk, sizes=[N])[N]
adapter_dir = os.path.join(out_dir, f"adapter_size_{N}")
train.train_peft(args.model, mix, adapter_dir, max_steps=300) # MVP: few steps
metrics = {}
if args.task == "classification":
metrics.update(evalm.eval_classification(adapter_dir, test))
else:
metrics.update(evalm.eval_qa(adapter_dir, test))
per_size.append({"size": N, "metrics": metrics})
# Fit scaling on the primary metric
key = "exact_match" if args.task == "qa" else "f1"
sizes = [r["size"] for r in per_size]
scores = [r["metrics"][key] for r in per_size]
fit = scaling.fit_powerlaw(sizes, scores, higher_is_better=True)
pred = scaling.predict_powerlaw(args.target_size, fit, higher_is_better=True)
# Write artifacts
mpath = os.path.join(out_dir, "metrics.json")
with open(mpath, "w") as f:
json.dump({"runs": per_size, "fit": fit, "prediction": { "target_size": args.target_size, key: pred }}, f, indent=2)
plotting.plot_scaling(sizes, scores, key, os.path.join(out_dir, "scaling.png"))
# Push artifacts
repo_id = hub.ensure_results_repo(os.getenv("SERVICE_HF_TOKEN"), args.results_repo)
hub.push_artifacts(repo_id, out_dir, subdir=f"experiments/{args.job_id}")
print(json.dumps({"status":"ok","artifacts_repo": repo_id, "path": f"experiments/{args.job_id}"}))
if __name__ == "__main__":
main()
```
**Acceptance criteria**
* Running with tiny toy inputs creates `artifacts/<job_id>/` + pushes to results repo.
* `metrics.json` and `scaling.png` exist and look sensible.
---
## 13) Job Submission from UI — `app.py` (continued)
### Core actions
* **Submit**: for each selected Dₖ → call `huggingface_hub.run_job(...)` with:
* `image`: CUDA‑capable (e.g., `pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel`)
* `command`: `["python","jobs/run_experiment.py", "--model", model_id, "--task", task, "--d0", d0_repo, "--dk", dk_id, "--metrics", *metrics, "--sizes", *sizes, "--target_size", str(target_size), "--results_repo", results_repo_or_empty]`
* `flavor`: `"a10g-small"`
* `timeout`: e.g., `7200` (seconds)
* `env`: `{"HF_TOKEN": user_token or SERVICE_HF_TOKEN, "SERVICE_HF_TOKEN": SERVICE_HF_TOKEN, "RESULTS_REPO": RESULTS_REPO}`
* **Poll**: keep a dict `{job_id: {dk, status, url, artifacts}}`; update via `inspect_job(job_id)`; for `completed`, set artifacts link to `hf://<results_repo>/experiments/<job_id>/`.
**Acceptance criteria**
* Submitting 2 Dₖ creates 2 jobs; both progress independently; artifacts link works.
---
## 14) Guardrails & Licensing
* **Gated models**: probe download with `hf_hub_download(model_id, filename="README.md", token=user_token)` to confirm access; if 401/403, show a clear message to accept the license on the model card.
* **Dataset licensing**: surface the `license` field from `candidates.json` next to each Dₖ; later fetch from Hub.
* **Uploads**: warn users that uploaded D₀ will be stored in a **private dataset** (repo id shown in UI); provide a “Delete my upload” note linking to the repo.
* **Resource limits**: cap sizes (`sizes=[5_000, 10_000]` for MVP), cap number of concurrent jobs per user (client‑side only for MVP).
---
## 15) Testing
### Local (CPU) sanity checks
* Use a very small subset (e.g., 200 examples) and `max_steps=10` to verify the end‑to‑end loop without a GPU.
* Mock `run_job(...)` (optional) to test UI job table logic.
### Space integration
* Create a private test Space results repo (e.g., `your-org/curation-results-test`).
* Submit a single Dₖ job and verify:
* `artifacts/` created,
* `metrics.json` contains per‑size metrics and prediction,
* `scaling.png` renders,
* artifacts are uploaded and visible from the UI link.
---
## 16) Definition of Done (DoD)
* A signed‑in user can:
1. Provide **D₀** (upload or Hub id),
2. Choose **model**, **task**, **metrics**, and ≥1 **Dₖ**,
3. Click **Run** and see a job per Dₖ with live status,
4. Open **artifacts** (plot + metrics),
5. See a **ranked table** of Dₖ by the chosen primary metric,
6. (Optional) Download `metrics.json`.
* All long work executes as **Jobs** (no HTTP timeouts).
* Artifacts persist in a results dataset or Space storage.
---
## 17) Nice‑to‑Have (post‑MVP)
* **Column mapping UI**: let users map their D₀ columns to `text/label` or `question/context/answers`.
* **Seed sweeps** and confidence intervals on scaling fit.
* **Hardware selector** and budget estimator.
* **vLLM/TGI** inference for faster eval.
* **Per‑user “My Experiments”** page (prefix `experiments/<username>/...`).
---
## 18) Task Checklist (assignable to your agent)
**A. Scaffolding**
* [ ] Add `requirements.txt`; ensure importable on the Space.
* [ ] Create folders: `catalog/`, `utils/`, `jobs/`.
**B. Catalog**
* [ ] Fill `catalog/candidates.json` (3–6 datasets), including `columns` mapping.
**C. Hub utilities (`utils/hub.py`)**
* [ ] `ensure_uploaded_dataset(...)`
* [ ] `ensure_results_repo(...)`
* [ ] `push_artifacts(...)`
**D. Data helpers (`utils/data.py`)**
* [ ] `load_dataset_normalized(...)` for classification + QA
* [ ] `build_mixtures(...)`
* [ ] `load_benchmark(...)`
**E. Plotting (`utils/plotting.py`)**
* [ ] `plot_scaling(...)`
**F. Jobs**
* [ ] `jobs/train.py` (PEFT SFT)
* [ ] `jobs/eval.py` (classification + QA)
* [ ] `jobs/scaling.py` (fit + predict)
* [ ] `jobs/run_experiment.py` (glue the above, produce artifacts, push)
**G. UI (`app.py`)**
* [ ] Build form (inputs, selectors, candidates list)
* [ ] Submit one job per Dₖ via `run_job(...)`
* [ ] Poll job status & render jobs table
* [ ] Artifacts viewer: link to results repo path
* [ ] Basic error messages (license issues, upload failures)
**H. Tests**
* [ ] Local micro‑run (CPU) with tiny sizes
* [ ] Space run on GPU flavor with one Dₖ
* [ ] Verify artifacts + plot + ranking table
---
## 19) Code Snippets to Start Implementation
### `app.py` — minimal UI skeleton (submit + poll)
```python
import os, json, time, gradio as gr
from huggingface_hub import run_job, inspect_job
from utils.hub import ensure_uploaded_dataset, ensure_results_repo
CANDIDATES = json.load(open("catalog/candidates.json"))
def submit(d0_files, d0_id, task, model, metrics, dk_list, sizes, target_size,
profile: gr.OAuthProfile | None, oauth: gr.OAuthToken | None):
user_token = getattr(oauth, "token", None)
d0_repo = ensure_uploaded_dataset(d0_files, d0_id, user_token=user_token)
results_repo = ensure_results_repo(os.getenv("SERVICE_HF_TOKEN"), os.getenv("RESULTS_REPO",""))
jobs = []
for dk in dk_list:
cmd = ["python","jobs/run_experiment.py",
"--model", model, "--task", task, "--d0", d0_repo, "--dk", dk,
"--metrics", *metrics, "--sizes", *[str(s) for s in sizes],
"--target_size", str(target_size), "--results_repo", results_repo]
job = run_job(
image="pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel",
command=cmd,
flavor="a10g-small",
timeout=7200,
env={"HF_TOKEN": user_token or os.getenv("SERVICE_HF_TOKEN"),
"SERVICE_HF_TOKEN": os.getenv("SERVICE_HF_TOKEN"),
"RESULTS_REPO": results_repo},
)
jobs.append({"id": job.id, "dk": dk, "url": job.url, "status": "queued", "artifacts": ""})
return jobs
def poll(jobs_state):
updated = []
for j in jobs_state:
info = inspect_job(j["id"])
st = info.status # "queued"/"running"/"completed"/"failed"
art = j.get("artifacts","")
# Heuristic: artifacts live in RESULTS_REPO/experiments/<job_id> (set by run_experiment.py)
if st == "completed" and not art:
art = f"{os.getenv('RESULTS_REPO','(repo)')}/experiments/{j['id']}"
updated.append({**j, "status": st, "artifacts": art})
return updated
with gr.Blocks() as demo:
prof = gr.LoginButton()
with gr.Row():
d0_files = gr.UploadButton("Upload D₀ (.csv/.jsonl/.zip)", file_count="multiple")
d0_id = gr.Textbox(label="or Hub dataset id (user/dataset)")
task = gr.Radio(choices=["classification","qa"], value="classification", label="Task")
model = gr.Dropdown(choices=["meta-llama/Llama-3.1-8B-Instruct"], label="Model")
metrics = gr.CheckboxGroup(choices=["loss","f1","exact_match"], value=["f1"], label="Metrics")
dk = gr.CheckboxGroup(choices=[c["id"] for c in CANDIDATES], label="Candidate datasets")
sizes = gr.CheckboxGroup(choices=[5000,10000,20000], value=[5000,10000], label="Mixture sizes")
target_size = gr.Number(value=200000, label="Target size for prediction")
run_btn = gr.Button("Run experiments")
jobs_state = gr.State([])
jobs_table = gr.Dataframe(headers=["id","dk","status","url","artifacts"], datatype=["str","str","str","str","str"])
run_btn.click(fn=submit,
inputs=[d0_files, d0_id, task, model, metrics, dk, sizes, target_size, gr.OAuthProfile, gr.OAuthToken],
outputs=jobs_state)
gr.Button("Refresh status").click(fn=poll, inputs=jobs_state, outputs=jobs_state)
def render_table(jobs): # render as simple rows
rows = [[j["id"], j["dk"], j["status"], j["url"], j["artifacts"]] for j in jobs]
return rows
jobs_state.change(fn=render_table, inputs=jobs_state, outputs=jobs_table)
gr.Markdown("Open artifacts in the results repo once jobs complete.")
demo.queue().launch()
```
### `utils/hub.py` — upload & results
```python
import os, uuid, tempfile, shutil
from huggingface_hub import HfApi, create_repo, upload_file, upload_folder
def ensure_uploaded_dataset(upload_files, d0_dataset_id, user_token=None):
if d0_dataset_id:
return d0_dataset_id
if not upload_files: # nothing uploaded
raise ValueError("Please upload D₀ or provide a Hub dataset id.")
api = HfApi(token=os.getenv("SERVICE_HF_TOKEN"))
repo_id = f"{os.getenv('HF_ORG','your-org')}/curation-upload-{uuid.uuid4().hex[:8]}"
create_repo(repo_id, repo_type="dataset", private=True, exist_ok=True, token=os.getenv("SERVICE_HF_TOKEN"))
with tempfile.TemporaryDirectory() as tmp:
# Gradio returns a list of tempfiles; copy them into a folder
for f in upload_files:
dst = os.path.join(tmp, os.path.basename(getattr(f,"name", "file")))
shutil.copyfile(f.name if hasattr(f,"name") else f, dst)
upload_folder(folder_path=tmp, repo_id=repo_id, repo_type="dataset", token=os.getenv("SERVICE_HF_TOKEN"))
return repo_id
def ensure_results_repo(service_token, results_repo_env):
api = HfApi(token=service_token)
if results_repo_env:
parts = results_repo_env.split("/")
if len(parts) == 2:
create_repo(results_repo_env, repo_type="dataset", private=True, exist_ok=True, token=service_token)
return results_repo_env
repo_id = f"{os.getenv('HF_ORG','your-org')}/curation-results"
create_repo(repo_id, repo_type="dataset", private=True, exist_ok=True, token=service_token)
return repo_id
def push_artifacts(repo_id, local_dir, subdir=""):
path_in_repo = subdir.strip("/")
upload_folder(folder_path=local_dir, repo_id=repo_id, repo_type="dataset",
path_in_repo=path_in_repo if path_in_repo else None,
token=os.getenv("SERVICE_HF_TOKEN"))
``` |