Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,528 Bytes
639c25d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
from __future__ import annotations
import pathlib
import random
import sys
from typing import Callable
import clip
import einops
import numpy as np
import PIL.Image
import torch
from huggingface_hub import snapshot_download
repo_dir = pathlib.Path(__file__).parent
submodule_dir = repo_dir / 'unidiffuser'
sys.path.append(submodule_dir.as_posix())
import utils
from configs.sample_unidiffuser_v1 import get_config
from dpm_solver_pp import DPM_Solver, NoiseScheduleVP
from libs.autoencoder import FrozenAutoencoderKL
from libs.autoencoder import get_model as get_autoencoder
from libs.caption_decoder import CaptionDecoder
from libs.clip import FrozenCLIPEmbedder
model_dir = repo_dir / 'models'
if not model_dir.exists():
snapshot_download('thu-ml/unidiffuser-v1',
repo_type='model',
local_dir=model_dir)
def stable_diffusion_beta_schedule(linear_start=0.00085,
linear_end=0.0120,
n_timestep=1000):
_betas = (torch.linspace(linear_start**0.5,
linear_end**0.5,
n_timestep,
dtype=torch.float64)**2)
return _betas.numpy()
class Model:
def __init__(self):
self.device = torch.device(
'cuda:0' if torch.cuda.is_available() else 'cpu')
self.config = get_config()
self.nnet = self.load_model()
self.caption_decoder = CaptionDecoder(device=self.device,
**self.config.caption_decoder)
self.clip_text_model = self.load_clip_text_model()
self.autoencoder = self.load_autoencoder()
self.clip_img_model, self.clip_img_model_preprocess = clip.load(
'ViT-B/32', device=self.device, jit=False)
self.empty_context = self.clip_text_model.encode([''])[0]
self.betas = stable_diffusion_beta_schedule()
self.N = len(self.betas)
@property
def use_caption_decoder(self) -> bool:
return (self.config.text_dim < self.config.clip_text_dim
or self.config.mode != 't2i')
def load_model(self,
model_path: str = 'models/uvit_v1.pth') -> torch.nn.Module:
model = utils.get_nnet(**self.config.nnet)
model.load_state_dict(torch.load(model_path, map_location='cpu'))
model.to(self.device)
model.eval()
return model
def load_clip_text_model(self) -> FrozenCLIPEmbedder:
clip_text_model = FrozenCLIPEmbedder(device=self.device)
clip_text_model.to(self.device)
clip_text_model.eval()
return clip_text_model
def load_autoencoder(self) -> FrozenAutoencoderKL:
autoencoder = get_autoencoder(**self.config.autoencoder)
autoencoder.to(self.device)
return autoencoder
def split(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
C, H, W = self.config.z_shape
z_dim = C * H * W
z, clip_img = x.split([z_dim, self.config.clip_img_dim], dim=1)
z = einops.rearrange(z, 'B (C H W) -> B C H W', C=C, H=H, W=W)
clip_img = einops.rearrange(clip_img,
'B (L D) -> B L D',
L=1,
D=self.config.clip_img_dim)
return z, clip_img
@staticmethod
def combine(z, clip_img):
z = einops.rearrange(z, 'B C H W -> B (C H W)')
clip_img = einops.rearrange(clip_img, 'B L D -> B (L D)')
return torch.concat([z, clip_img], dim=-1)
def t2i_nnet(
self, x, timesteps, text
): # text is the low dimension version of the text clip embedding
"""
1. calculate the conditional model output
2. calculate unconditional model output
config.sample.t2i_cfg_mode == 'empty_token': using the original cfg with the empty string
config.sample.t2i_cfg_mode == 'true_uncond: using the unconditional model learned by our method
3. return linear combination of conditional output and unconditional output
"""
z, clip_img = self.split(x)
t_text = torch.zeros(timesteps.size(0),
dtype=torch.int,
device=self.device)
z_out, clip_img_out, text_out = self.nnet(
z,
clip_img,
text=text,
t_img=timesteps,
t_text=t_text,
data_type=torch.zeros_like(
t_text, device=self.device, dtype=torch.int) +
self.config.data_type)
x_out = self.combine(z_out, clip_img_out)
if self.config.sample.scale == 0.:
return x_out
if self.config.sample.t2i_cfg_mode == 'empty_token':
_empty_context = einops.repeat(self.empty_context,
'L D -> B L D',
B=x.size(0))
if self.use_caption_decoder:
_empty_context = self.caption_decoder.encode_prefix(
_empty_context)
z_out_uncond, clip_img_out_uncond, text_out_uncond = self.nnet(
z,
clip_img,
text=_empty_context,
t_img=timesteps,
t_text=t_text,
data_type=torch.zeros_like(
t_text, device=self.device, dtype=torch.int) +
self.config.data_type)
x_out_uncond = self.combine(z_out_uncond, clip_img_out_uncond)
elif self.config.sample.t2i_cfg_mode == 'true_uncond':
text_N = torch.randn_like(text) # 3 other possible choices
z_out_uncond, clip_img_out_uncond, text_out_uncond = self.nnet(
z,
clip_img,
text=text_N,
t_img=timesteps,
t_text=torch.ones_like(timesteps) * self.N,
data_type=torch.zeros_like(
t_text, device=self.device, dtype=torch.int) +
self.config.data_type)
x_out_uncond = self.combine(z_out_uncond, clip_img_out_uncond)
else:
raise NotImplementedError
return x_out + self.config.sample.scale * (x_out - x_out_uncond)
def i_nnet(self, x, timesteps):
z, clip_img = self.split(x)
text = torch.randn(x.size(0),
77,
self.config.text_dim,
device=self.device)
t_text = torch.ones_like(timesteps) * self.N
z_out, clip_img_out, text_out = self.nnet(
z,
clip_img,
text=text,
t_img=timesteps,
t_text=t_text,
data_type=torch.zeros_like(
t_text, device=self.device, dtype=torch.int) +
self.config.data_type)
x_out = self.combine(z_out, clip_img_out)
return x_out
def t_nnet(self, x, timesteps):
z = torch.randn(x.size(0), *self.config.z_shape, device=self.device)
clip_img = torch.randn(x.size(0),
1,
self.config.clip_img_dim,
device=self.device)
z_out, clip_img_out, text_out = self.nnet(
z,
clip_img,
text=x,
t_img=torch.ones_like(timesteps) * self.N,
t_text=timesteps,
data_type=torch.zeros_like(
timesteps, device=self.device, dtype=torch.int) +
self.config.data_type)
return text_out
def i2t_nnet(self, x, timesteps, z, clip_img):
"""
1. calculate the conditional model output
2. calculate unconditional model output
3. return linear combination of conditional output and unconditional output
"""
t_img = torch.zeros(timesteps.size(0),
dtype=torch.int,
device=self.device)
z_out, clip_img_out, text_out = self.nnet(
z,
clip_img,
text=x,
t_img=t_img,
t_text=timesteps,
data_type=torch.zeros_like(
t_img, device=self.device, dtype=torch.int) +
self.config.data_type)
if self.config.sample.scale == 0.:
return text_out
z_N = torch.randn_like(z) # 3 other possible choices
clip_img_N = torch.randn_like(clip_img)
z_out_uncond, clip_img_out_uncond, text_out_uncond = self.nnet(
z_N,
clip_img_N,
text=x,
t_img=torch.ones_like(timesteps) * self.N,
t_text=timesteps,
data_type=torch.zeros_like(
timesteps, device=self.device, dtype=torch.int) +
self.config.data_type)
return text_out + self.config.sample.scale * (text_out -
text_out_uncond)
def split_joint(self, x):
C, H, W = self.config.z_shape
z_dim = C * H * W
z, clip_img, text = x.split(
[z_dim, self.config.clip_img_dim, 77 * self.config.text_dim],
dim=1)
z = einops.rearrange(z, 'B (C H W) -> B C H W', C=C, H=H, W=W)
clip_img = einops.rearrange(clip_img,
'B (L D) -> B L D',
L=1,
D=self.config.clip_img_dim)
text = einops.rearrange(text,
'B (L D) -> B L D',
L=77,
D=self.config.text_dim)
return z, clip_img, text
@staticmethod
def combine_joint(z: torch.Tensor, clip_img: torch.Tensor,
text: torch.Tensor) -> torch.Tensor:
z = einops.rearrange(z, 'B C H W -> B (C H W)')
clip_img = einops.rearrange(clip_img, 'B L D -> B (L D)')
text = einops.rearrange(text, 'B L D -> B (L D)')
return torch.concat([z, clip_img, text], dim=-1)
def joint_nnet(self, x, timesteps):
z, clip_img, text = self.split_joint(x)
z_out, clip_img_out, text_out = self.nnet(
z,
clip_img,
text=text,
t_img=timesteps,
t_text=timesteps,
data_type=torch.zeros_like(
timesteps, device=self.device, dtype=torch.int) +
self.config.data_type)
x_out = self.combine_joint(z_out, clip_img_out, text_out)
if self.config.sample.scale == 0.:
return x_out
z_noise = torch.randn(x.size(0),
*self.config.z_shape,
device=self.device)
clip_img_noise = torch.randn(x.size(0),
1,
self.config.clip_img_dim,
device=self.device)
text_noise = torch.randn(x.size(0),
77,
self.config.text_dim,
device=self.device)
_, _, text_out_uncond = self.nnet(
z_noise,
clip_img_noise,
text=text,
t_img=torch.ones_like(timesteps) * self.N,
t_text=timesteps,
data_type=torch.zeros_like(
timesteps, device=self.device, dtype=torch.int) +
self.config.data_type)
z_out_uncond, clip_img_out_uncond, _ = self.nnet(
z,
clip_img,
text=text_noise,
t_img=timesteps,
t_text=torch.ones_like(timesteps) * self.N,
data_type=torch.zeros_like(
timesteps, device=self.device, dtype=torch.int) +
self.config.data_type)
x_out_uncond = self.combine_joint(z_out_uncond, clip_img_out_uncond,
text_out_uncond)
return x_out + self.config.sample.scale * (x_out - x_out_uncond)
@torch.cuda.amp.autocast()
def encode(self, _batch):
return self.autoencoder.encode(_batch)
@torch.cuda.amp.autocast()
def decode(self, _batch):
return self.autoencoder.decode(_batch)
def prepare_contexts(
self) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
resolution = self.config.z_shape[-1] * 8
contexts = torch.randn(self.config.n_samples, 77,
self.config.clip_text_dim).to(self.device)
img_contexts = torch.randn(self.config.n_samples,
2 * self.config.z_shape[0],
self.config.z_shape[1],
self.config.z_shape[2])
clip_imgs = torch.randn(self.config.n_samples, 1,
self.config.clip_img_dim)
if self.config.mode in ['t2i', 't2i2t']:
prompts = [self.config.prompt] * self.config.n_samples
contexts = self.clip_text_model.encode(prompts)
elif self.config.mode in ['i2t', 'i2t2i']:
img_contexts = []
clip_imgs = []
def get_img_feature(image):
image = np.array(image).astype(np.uint8)
image = utils.center_crop(resolution, resolution, image)
clip_img_feature = self.clip_img_model.encode_image(
self.clip_img_model_preprocess(
PIL.Image.fromarray(image)).unsqueeze(0).to(
self.device))
image = (image / 127.5 - 1.0).astype(np.float32)
image = einops.rearrange(image, 'h w c -> 1 c h w')
image = torch.tensor(image, device=self.device)
moments = self.autoencoder.encode_moments(image)
return clip_img_feature, moments
image = PIL.Image.open(self.config.img).convert('RGB')
clip_img, img_context = get_img_feature(image)
img_contexts.append(img_context)
clip_imgs.append(clip_img)
img_contexts = img_contexts * self.config.n_samples
clip_imgs = clip_imgs * self.config.n_samples
img_contexts = torch.concat(img_contexts, dim=0)
clip_imgs = torch.stack(clip_imgs, dim=0)
return contexts, img_contexts, clip_imgs
@staticmethod
def unpreprocess(v: torch.Tensor) -> torch.Tensor: # to B C H W and [0, 1]
v = 0.5 * (v + 1.)
v.clamp_(0., 1.)
return v
def get_sample_fn(self, _n_samples: int) -> Callable:
def sample_fn(mode: str, **kwargs):
_z_init = torch.randn(_n_samples,
*self.config.z_shape,
device=self.device)
_clip_img_init = torch.randn(_n_samples,
1,
self.config.clip_img_dim,
device=self.device)
_text_init = torch.randn(_n_samples,
77,
self.config.text_dim,
device=self.device)
if mode == 'joint':
_x_init = self.combine_joint(_z_init, _clip_img_init,
_text_init)
elif mode in ['t2i', 'i']:
_x_init = self.combine(_z_init, _clip_img_init)
elif mode in ['i2t', 't']:
_x_init = _text_init
noise_schedule = NoiseScheduleVP(schedule='discrete',
betas=torch.tensor(
self.betas,
device=self.device).float())
def model_fn(x, t_continuous):
t = t_continuous * self.N
if mode == 'joint':
return self.joint_nnet(x, t)
elif mode == 't2i':
return self.t2i_nnet(x, t, **kwargs)
elif mode == 'i2t':
return self.i2t_nnet(x, t, **kwargs)
elif mode == 'i':
return self.i_nnet(x, t)
elif mode == 't':
return self.t_nnet(x, t)
dpm_solver = DPM_Solver(model_fn,
noise_schedule,
predict_x0=True,
thresholding=False)
with torch.inference_mode(), torch.autocast(
device_type=self.device.type):
x = dpm_solver.sample(_x_init,
steps=self.config.sample.sample_steps,
eps=1. / self.N,
T=1.)
if mode == 'joint':
_z, _clip_img, _text = self.split_joint(x)
return _z, _clip_img, _text
elif mode in ['t2i', 'i']:
_z, _clip_img = self.split(x)
return _z, _clip_img
elif mode in ['i2t', 't']:
return x
return sample_fn
@staticmethod
def to_pil(tensor: torch.Tensor) -> PIL.Image.Image:
return PIL.Image.fromarray(
tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to(
'cpu', torch.uint8).numpy())
def run(self, mode: str, prompt: str, image_path: str, seed: int,
num_steps: int,
guidance_scale: float) -> tuple[PIL.Image.Image | None, str]:
self.config.mode = mode
self.config.prompt = prompt
self.config.img = image_path
self.config.seed = seed
self.config.sample.sample_steps = num_steps
self.config.sample.scale = guidance_scale
self.config.n_samples = 1
#set_seed(self.config.seed)
if seed == -1:
seed = random.randint(0, 1000000)
torch.manual_seed(seed)
contexts, img_contexts, clip_imgs = self.prepare_contexts()
if self.use_caption_decoder:
contexts_low_dim = self.caption_decoder.encode_prefix(contexts)
else:
contexts_low_dim = contexts
z_img = self.autoencoder.sample(img_contexts)
if self.config.mode in ['t2i', 't2i2t']:
_n_samples = contexts_low_dim.size(0)
elif self.config.mode in ['i2t', 'i2t2i']:
_n_samples = img_contexts.size(0)
else:
_n_samples = self.config.n_samples
sample_fn = self.get_sample_fn(_n_samples)
if self.config.mode == 'joint':
_z, _clip_img, _text = sample_fn(self.config.mode)
samples = self.unpreprocess(self.decode(_z))
samples = [self.to_pil(tensor) for tensor in samples]
prompts = self.caption_decoder.generate_captions(_text)
return samples[0], prompts[0]
elif self.config.mode in ['t2i', 'i', 'i2t2i']:
if self.config.mode == 't2i':
_z, _clip_img = sample_fn(
self.config.mode,
text=contexts_low_dim) # conditioned on the text embedding
elif self.config.mode == 'i':
_z, _clip_img = sample_fn(self.config.mode)
elif self.config.mode == 'i2t2i':
_text = sample_fn(
'i2t', z=z_img,
clip_img=clip_imgs) # conditioned on the image embedding
_z, _clip_img = sample_fn('t2i', text=_text)
samples = self.unpreprocess(self.decode(_z))
samples = [self.to_pil(tensor) for tensor in samples]
return samples[0], ''
elif self.config.mode in ['i2t', 't', 't2i2t']:
if self.config.mode == 'i2t':
_text = sample_fn(
self.config.mode, z=z_img,
clip_img=clip_imgs) # conditioned on the image embedding
elif self.config.mode == 't':
_text = sample_fn(self.config.mode)
elif self.config.mode == 't2i2t':
_z, _clip_img = sample_fn('t2i', text=contexts_low_dim)
_text = sample_fn('i2t', z=_z, clip_img=_clip_img)
prompts = self.caption_decoder.generate_captions(_text)
return None, prompts[0]
else:
raise ValueError
|