Spaces:
Sleeping
Sleeping
File size: 5,272 Bytes
e6f4cd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchmetrics.functional import dice, jaccard_index, accuracy
from segmentation_models_pytorch.losses import DiceLoss, TverskyLoss, FocalLoss
from src.medicalDataLoader import MedicalImageDataset
from src.utils import getTargetSegmentation, plot_img
from UNET_perso import UNET
## Parameters & Hyperparameters ##
EPOCHS = 2
BATCH_SIZE_TRAIN = 8
BATCH_SIZE_VAL = 8
LR = 1e-3
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.cuda.empty_cache()
## Model ##
model = UNET(in_channels=1, out_channels=4).to(DEVICE)
## Loss ##
lossCE = nn.CrossEntropyLoss().to(DEVICE)
lossDice = DiceLoss(mode='multiclass').to(DEVICE)
## optimizer ##
#optimizer = torch.optim.Adam(model.parameters(), lr=LR)
optimizer = torch.optim.NAdam(model.parameters(), lr=LR)
transform = transforms.Compose([transforms.ToTensor()])
ROOT_DIR = './Data'
train_set = MedicalImageDataset('train',
ROOT_DIR,
transform=transform,
mask_transform=transform,
augment=True,
equalize=False)
train_loader = DataLoader(train_set,
batch_size=BATCH_SIZE_TRAIN,
shuffle=True)
val_set = MedicalImageDataset('val',
ROOT_DIR,
transform=transform,
mask_transform=transform,
equalize=False)
val_loader = DataLoader(val_set,
batch_size=BATCH_SIZE_VAL,
shuffle=False)
test_set = MedicalImageDataset('test',
ROOT_DIR,
transform=transform,
mask_transform=transform,
equalize=False)
test_loader = DataLoader(test_set,
batch_size=BATCH_SIZE_VAL,
shuffle=False)
def train(dataLoader, model, optimizer, epoch, loss_fn1, loss_fn2=None):
print(f'~~~ train for epoch {epoch} ~~~')
model.train()
loop = tqdm(dataLoader)
train_loss = 0
for i, (img, labels, name) in enumerate(loop):
#if torch.cuda.is_available():
labels = getTargetSegmentation(labels)
img, labels = img.to(DEVICE), labels.to(DEVICE)
yPred = model(img)
if loss_fn2!=None:
loss = 0.5*loss_fn1(yPred, labels) + 0.5*loss_fn2(yPred, labels)
else : loss = loss_fn1(yPred, labels)
train_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
loop.set_postfix(loss=loss.item()/len(dataLoader))
print('total train loss : {:.4f}\n'.format(train_loss/len(dataLoader.dataset)))
return model, train_loss/len(dataLoader.dataset)
def test(dataLoader, model, loss_fn, epoch):
print(f'~~~ validation for epoch {epoch} ~~~')
model.eval()
size = len(dataLoader)
loop = tqdm(dataLoader)
test_loss = 0
Acc = 0
Dsc1, Dsc2, Dsc3 = 0, 0, 0
IOU1, IOU2, IOU3 = 0, 0, 0
for i, (img, labels, name) in enumerate(loop):
#if torch.cuda.is_available():
labels = getTargetSegmentation(labels)
img, labels = img.to(DEVICE), labels.to(DEVICE)
yPred = model(img)
loss = loss_fn(yPred, labels)
test_loss += loss.item()
loop.set_postfix(loss=loss.item()/len(dataLoader))
Dsc = dice(yPred, labels, average='none', num_classes=4).cpu()
IOU = jaccard_index(yPred, labels, task='multiclass', average='none', num_classes=4).cpu()
Dsc1 += Dsc[1]
Dsc2 += Dsc[2]
Dsc3 += Dsc[3]
IOU1 += IOU[1]
IOU2 += IOU[2]
IOU3 += IOU[3]
print('total test loss : {:.4f}\nDice score 1 : {:.4f} | Dice score 2 : {:.4f} | Dice score 3 : {:.4f}\nIOU 1 : {:.4f} | IOU 2 : {:.4f} | IOU 3 : {:.4f}\n'.format(test_loss/size, Dsc1/size, Dsc2/size, Dsc3/size, IOU1/size, IOU2/size, IOU3/size))
return test_loss/size, Dsc1/size, Dsc2/size, Dsc3/size, IOU1/size, IOU2/size, IOU3/size
def main(train_loader, test_loader, model, optimizer, loss1, loss2):
train_loss_lst, test_loss_lst = [], []
Dsc1_lst, Dsc2_lst, Dsc3_lst = [], [], []
IOU1_lst, IOU2_lst, IOU3_lst = [], [], []
for i in range(EPOCHS):
model, train_loss = train(train_loader, model, optimizer, i+1, loss_fn1=loss1, loss_fn2=loss2)
test_loss, Dsc1, Dsc2, Dsc3, IOU1, IOU2, IOU3 = test(test_loader, model, loss1, i+1)
train_loss_lst.append(train_loss)
test_loss_lst.append(test_loss)
Dsc1_lst.append(Dsc1)
Dsc2_lst.append(Dsc2)
Dsc3_lst.append(Dsc3)
IOU1_lst.append(IOU1)
IOU2_lst.append(IOU2)
IOU3_lst.append(IOU3)
return model
if __name__=='__main__':
mdoel = main(train_loader, test_loader, model, optimizer, loss1=lossCE, loss2=lossDice)
plot_img(test_loader, 8, model) |