Spaces:
Sleeping
Sleeping
File size: 8,721 Bytes
e6f4cd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torchvision
import os
from os.path import isfile, join
from medpy.metric.binary import dc, hd, asd, assd
import matplotlib.pyplot as plt
from IPython.display import Image, display
labels = {0: 'Background', 1: 'Foreground'}
def computeDSC(pred, gt):
dscAll = []
#pdb.set_trace()
for i_b in range(pred.shape[0]):
pred_id = pred[i_b, 1, :]
gt_id = gt[i_b, 0, :]
dscAll.append(dc(pred_id.cpu().data.numpy(), gt_id.cpu().data.numpy()))
DSC = np.asarray(dscAll)
return DSC.mean()
def getImageImageList(imagesFolder):
if os.path.exists(imagesFolder):
imageNames = [f for f in os.listdir(imagesFolder) if isfile(join(imagesFolder, f))]
imageNames.sort()
return imageNames
def to_var(x):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x)
def DicesToDice(Dices):
sums = Dices.sum(dim=0)
return (2 * sums[0] + 1e-8) / (sums[1] + 1e-8)
def predToSegmentation(pred):
Max = pred.max(dim=1, keepdim=True)[0]
x = pred / Max
# pdb.set_trace()
return (x == 1).float()
def getTargetSegmentation(batch):
# input is 1-channel of values between 0 and 1
# values are as follows : 0, 0.33333334, 0.6666667 and 0.94117647
# output is 1 channel of discrete values : 0, 1, 2 and 3
denom = 0.33333334 # for ACDC this value
return (batch / denom).round().long().squeeze()
from scipy import ndimage
def inference(net, img_batch, modelName, epoch):
total = len(img_batch)
net.eval()
softMax = nn.Softmax().cuda()
CE_loss = nn.CrossEntropyLoss().cuda()
losses = []
for i, data in enumerate(img_batch):
printProgressBar(i, total, prefix="[Inference] Getting segmentations...", length=30)
images, labels, img_names = data
images = to_var(images)
labels = to_var(labels)
net_predictions = net(images)
segmentation_classes = getTargetSegmentation(labels)
CE_loss_value = CE_loss(net_predictions, segmentation_classes)
losses.append(CE_loss_value.cpu().data.numpy())
pred_y = softMax(net_predictions)
masks = torch.argmax(pred_y, dim=1)
path = os.path.join('./Results/Images/', modelName, str(epoch))
if not os.path.exists(path):
os.makedirs(path)
torchvision.utils.save_image(
torch.cat([images.data, labels.data, masks.view(labels.shape[0], 1, 256, 256).data / 3.0]),
os.path.join(path, str(i) + '.png'), padding=0)
printProgressBar(total, total, done="[Inference] Segmentation Done !")
losses = np.asarray(losses)
return losses.mean()
class MaskToTensor(object):
def __call__(self, img):
return torch.from_numpy(np.array(img, dtype=np.int32)).float()
def save_checkpoint(state, filename="my_checkpoint.pth.tar"):
print("=> Saving checkpoint")
torch.save(state, filename)
def load_checkpoint(checkpoint, model):
print("=> Loading checkpoint")
model.load_state_dict(checkpoint["state_dict"])
def check_accuracy(loader, model, device="cuda"):
num_correct = 0
num_pixels = 0
dice_score = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device)
y = y.to(device).unsqueeze(1)
preds = torch.sigmoid(model(x))
preds = (preds > 0.5).float()
num_correct += (preds == y).sum()
num_pixels += torch.numel(preds)
dice_score += (2 * (preds * y).sum()) / (
(preds + y).sum() + 1e-8
)
print(
f"Got {num_correct}/{num_pixels} with acc {num_correct/num_pixels*100:.2f}"
)
print(f"Dice score: {dice_score/len(loader)}")
model.train()
def save_predictions_as_imgs(loader, model, folder="saved_images/", device="cuda"):
model.eval()
for idx, (x, y) in enumerate(loader):
x = x.to(device=device)
with torch.no_grad():
preds = torch.sigmoid(model(x))
preds = (preds > 0.5).float()
torchvision.utils.save_image(
preds, f"{folder}/pred_{idx}.png"
)
torchvision.utils.save_image(y.unsqueeze(1), f"{folder}{idx}.png")
model.train()
# converting tensor to image
def image_convert(image):
image = image.clone().cpu().numpy()
image = image.transpose((1,2,0))
image = (image * 255)
return image
def mask_convert(mask):
mask = mask.clone().cpu().detach().numpy()
return np.squeeze(mask)
#If model is true, this will run inference on some test image and show the output on a plot
def plot_img(loader, no_, model=None):
images, target, name = next(iter(loader))
ind = np.random.choice(range(loader.batch_size))
data= to_var(images)
for idx in range(0,no_):
plt.figure(figsize=(12,12))
#Images
image = image_convert(images[idx])
plt.subplot(1,3,1)
plt.imshow(image)
plt.title('Original Image')
#Ground truth target mask
mask = mask_convert(target[idx])
plt.subplot(1,3,2)
plt.imshow(mask)
plt.title('Original Mask')
if model is None:
#superposition with target mask
plt.subplot(1,3,3)
plt.imshow(image)
plt.imshow(mask,alpha=0.6)
plt.title('Superposition')
else:
softMax = nn.Softmax().cuda()
#showing prediction mask
plt.subplot(1,3,3)
#make a prediction bases on the previous image
yhat = model(data)
pred_y = softMax(yhat)
masks = torch.argmax(pred_y, dim=1)
plt.imshow(mask_convert(masks[idx]))
plt.title('Prediction')
plt.show()
"""
def get_loaders(root_dir, batch_size, NUM_WORKERS, PIN_MEMORY, test = False):
train_transform = A.Compose(
[
A.Resize(height=IMAGE_HEIGHT, width=IMAGE_WIDTH),
A.Rotate(limit=35, p=1.0),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.1),
A.Normalize(
mean=[0.0, 0.0, 0.0],
std=[1.0, 1.0, 1.0],
max_pixel_value=255.0,
),
ToTensorV2(),
],
)
val_transform = A.Compose(
[
A.Resize(height=IMAGE_HEIGHT, width=IMAGE_WIDTH),
A.Normalize(
mean=[0.0, 0.0, 0.0],
std=[1.0, 1.0, 1.0],
max_pixel_value=255.0,
),
ToTensorV2(),
],
)
## DUE TO THE CUSTOM LOADING CLASS, HE NEED TO USE TO STEP TO LOAD DATA
train_set_full = medicalDataLoader.MedicalImageDataset('train',
root_dir,
transform=train_transform,
mask_transform=train_transform,
augment=False,
equalize=False)
train_loader_full = DataLoader(train_set_full,
batch_size=batch_size,
worker_init_fn=np.random.seed(0),
num_workers= 0,
shuffle=True)
val_set = medicalDataLoader.MedicalImageDataset('val',
root_dir,
transform=val_transform,
mask_transform=val_transform,
equalize=False)
val_loader = DataLoader(val_set,
batch_size=batch_size,
worker_init_fn=np.random.seed(0),
num_workers = 0,
shuffle=False)
if test:
test_set = medicalDataLoader.MedicalImageDataset('test',
root_dir,
transform=None,
mask_transform=None,
equalize=False)
test_loader = DataLoader(test_set,
batch_size=batch_size,
num_workers=0,
shuffle=False)
return test_loader
return train_loader_full, val_loader""" |