File size: 9,399 Bytes
c507785
8496c78
 
f0d411f
 
 
 
 
 
8496c78
f0d411f
 
 
e390497
 
 
 
 
8496c78
e603fcd
f0d411f
 
 
 
 
 
 
 
e603fcd
069c3ba
 
e603fcd
069c3ba
 
f0d411f
 
 
 
 
cac478c
 
f0d411f
 
cac478c
f0d411f
cac478c
f0d411f
 
 
 
 
cac478c
 
f0d411f
 
cac478c
f0d411f
cac478c
f0d411f
 
 
 
e390497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0d411f
 
 
 
 
e603fcd
f0d411f
48b4eec
f0d411f
 
48b4eec
f0d411f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48b4eec
f0d411f
 
 
 
 
 
 
 
cac478c
f0d411f
 
 
 
 
e390497
 
 
f0d411f
e390497
 
8496c78
 
c507785
 
 
 
 
e390497
 
 
f0d411f
 
 
 
 
 
 
c507785
e603fcd
96b8c38
8496c78
 
 
 
 
 
 
ac217e8
8496c78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac217e8
8496c78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac217e8
8496c78
 
 
 
 
e603fcd
96b8c38
e603fcd
 
069c3ba
 
 
 
 
 
 
 
 
 
e603fcd
48b4eec
 
069c3ba
 
 
48b4eec
 
 
 
 
e603fcd
8496c78
 
c507785
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
from itertools import combinations

import streamlit as st
import pandas as pd
import numpy as np
from flaml import AutoML
from flaml.automl.data import get_output_from_log
import pickle
import matplotlib.pyplot as plt
import plotly.express as px
import base64
import time
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.inspection import permutation_importance
from sklearn.inspection import PartialDependenceDisplay
import shap

def autoML(csv, task, budget, label, metric_to_minimize_class, metric_to_minimize_reg):

    progress_text="Training in progress. Please wait."
    my_bar = st.progress(0, text=progress_text)
    time.sleep(0.5)

    df = pd.read_csv(csv)

    #msk = np.random.rand(len(df)) < 0.8
    #df_train, df_test = df[msk], df[~msk]

    df_features = df[df.columns.difference([label])]
    y = df[label]

    my_bar.progress(50, text=progress_text)


    if task == 'Classification':
        metric = metric_to_minimize_class
        log = 'classlog.log'
        automl_settings = {
            "time_budget": int(budget),
            "metric": metric,
            "task": 'classification',
            "log_file_name": log,
            "early_stop": True,
            "eval_method": "holdout"
        }

    if task == 'Regression':
        metric = metric_to_minimize_reg
        log = 'reglog.log'
        automl_settings = {
            "time_budget": int(budget),
            "metric": metric,
            "task": 'regression',
            "log_file_name": log,
            "early_stop": True,
            "eval_method": "holdout"
        }

    num_cols = df_features.select_dtypes(include=['float64', 'int64']).columns
    cat_cols = df_features.select_dtypes(include=['object']).columns

    numeric_transformer = Pipeline(steps=[
        ('imputer', SimpleImputer(strategy='mean')),
        ('scaler', StandardScaler())
    ])

    categorical_transformer = Pipeline(steps=[
        ('imputer', SimpleImputer(strategy='most_frequent')),
        ('onehot', OneHotEncoder(handle_unknown='ignore'))
    ])

    preprocessor = ColumnTransformer(
        transformers=[
            ('num', numeric_transformer, num_cols),
            ('cat', categorical_transformer, cat_cols)
        ])

    automl = AutoML(**automl_settings)

    pipeline = Pipeline(steps=[('preprocessor', preprocessor),
                                ('classifier', automl)])

    pipeline.fit(df_features, y)

    my_bar.progress(100, text=progress_text)
    time.sleep(0.5)
    my_bar.empty()

    tab1, tab2, tab3, tab4 = st.tabs(["AutoML", "Best Model", "Partial Dependence", "Shap Values"])


    with tab1:

        time_history, best_valid_loss_history, _, config_history, _ = get_output_from_log(filename=log, time_budget=120)
    
        def model(s):
            mod = s.get('Current Learner')
            return mod
        
        def hp(s):
            hparams = s.get('Current Hyper-parameters')
            return hparams

        df_res = pd.DataFrame({'time': time_history, 
                            metric: 1 - np.array(best_valid_loss_history),
                            'model': list(map(model, config_history)),
                            })
        
        fig = px.line(df_res,
                    title='evolution of best models found by AutoML',
                    x='time',
                    y=metric,
                    hover_name='model',
                    line_shape='hv',
                    range_y=[0,1])
        
        st.plotly_chart(fig, theme="streamlit")

        models = pd.DataFrame({'learner': list(map(model, config_history))})
        hps = list(map(hp, config_history))
        df_hp = pd.DataFrame(hps)
        df_models = pd.concat((models, df_hp), axis=1)

        def highlight_last_row(s):
            return ['background-color: yellow' if i == len(s) - 1 else '' for i in range(len(s))]

        st.dataframe(df_models.style.apply(highlight_last_row, axis=0))

        st.write('Estimator tested')
        st.table(automl.estimator_list)


    with tab2:
        st.header('Best Model')

        st.text(automl.model.estimator)

        col1, col2, col3 = st.columns((1,1,1))

        with col1:
            st.metric(label=metric, value=round(1 - automl.best_loss, 2))
        with col2:
            st.metric(label="Time to find", value=str(round(automl.time_to_find_best_model, 2))+' sec')
        with col3:
            st.metric(label="Time to train", value=str(round(automl.best_config_train_time, 2))+' sec')

        perm_importance = permutation_importance(
            pipeline, df_features, y, n_repeats=8
        )

        df_features_importance = pd.DataFrame({'features name': df_features.columns, 
                                                'features importance': perm_importance["importances_mean"],
                                                'std error': perm_importance["importances_std"]}).sort_values('features importance', ascending=True)
                
        fig_features = px.bar(df_features_importance, 
                              x='features importance', 
                              y='features name', 
                              error_x='std error',
                              height=50*len(df_features_importance))
    
        st.divider()
        st.plotly_chart(fig_features, theme="streamlit")

        def download_model(model):
            output_model = pickle.dumps(model)
            b64 = base64.b64encode(output_model).decode()
            href = f'<a href="data:file/output_model;base64,{b64}" download="automl.pkl">Download Trained Model File (.pkl)</a>'
            st.markdown(href, unsafe_allow_html=True)

        download_model(automl)
    
    
    with tab3:
        with st.container():
            st.subheader('1D Partial Dependance for the three most important features')
            
            l_col_1D = list(st.columns((1,1,1)))

            common_params = {
                        "subsample": 50,
                        "n_jobs": 2,
                        "grid_resolution": 20,
                        "random_state": 0
                    }

            most_important_features = list(df_features_importance.iloc[-3:]['features name'])

            for i, col in enumerate(l_col_1D): 
                with col:
                    features_info = {
                        "features": [most_important_features[i]],
                        "kind": "average",
                        "categorical_features": cat_cols
                    }

                    _, ax = plt.subplots(ncols=1, constrained_layout=True)
                    display = PartialDependenceDisplay.from_estimator(
                        pipeline,
                        df_features,
                        **features_info,
                        target=len(set(y)),
                        ax=ax,
                        **common_params,
                    )

                    st.pyplot(display.figure_)

        st.divider()
        
        with st.container():
            st.subheader('2D Partial Dependance for the three most important features')

            l_col_2D = list(st.columns((1,1,1)))

            most_important_features_comb = list(combinations(most_important_features, 2))

            for i, col in enumerate(l_col_2D): 
                with col:
                    features_info = {
                        "features": [most_important_features_comb[i]],
                        "kind": "average"
                    }

                    _, ax = plt.subplots(ncols=1, constrained_layout=True)

                    with st.spinner(f'Compute partial dependeces with {most_important_features_comb[i][0]} and {most_important_features_comb[i][1]}'):

                        display = PartialDependenceDisplay.from_estimator(
                            pipeline,
                            df_features,
                            **features_info,
                            target=len(set(y)),
                            ax=ax,
                            **common_params,
                        )
                                
                    st.pyplot(display.figure_)
    
    
    with tab4:

        #df_shap = df_features.sample(n=200, random_state=89)

        def get_only_features_names(name):
            return name[5:]
            
        df_transform = pd.DataFrame(data=preprocessor.fit_transform(df_features), 
                                         columns=list(map(get_only_features_names, 
                                                          preprocessor.get_feature_names_out())
                                                          )
                                        )

        with st.container():
            with st.spinner(f'Compute Shap Values...'):
                explainer = shap.Explainer(automl.model.predict, df_transform)
                shap_values = explainer(df_transform)

            st.subheader('Beeswarm Plot')
            plt.figure()
            st.pyplot(shap.plots.beeswarm(shap_values, show=False).figure)
            #st.divider()
            #st.pyplot(shap.plots.violin(shap_values, show=False).figure) 



    if os.path.isfile('datasets/temp_file.csv'):
        os.remove('datasets/temp_file.csv')