Spaces:
Build error
Build error
File size: 7,071 Bytes
11c2c17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import argparse
import os
import re
from pathlib import Path
from PIL import Image
from tqdm import tqdm
import torch
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers.generation.utils import GenerationMixin
import library.train_util as train_util
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
PATTERN_REPLACE = [
re.compile(r'(has|with|and) the (words?|letters?|name) (" ?[^"]*"|\w+)( ?(is )?(on|in) (the |her |their |him )?\w+)?'),
re.compile(r'(with a sign )?that says ?(" ?[^"]*"|\w+)( ?on it)?'),
re.compile(r"(with a sign )?that says ?(' ?(i'm)?[^']*'|\w+)( ?on it)?"),
re.compile(r"with the number \d+ on (it|\w+ \w+)"),
re.compile(r'with the words "'),
re.compile(r"word \w+ on it"),
re.compile(r"that says the word \w+ on it"),
re.compile("that says'the word \"( on it)?"),
]
# 誤検知しまくりの with the word xxxx を消す
def remove_words(captions, debug):
removed_caps = []
for caption in captions:
cap = caption
for pat in PATTERN_REPLACE:
cap = pat.sub("", cap)
if debug and cap != caption:
print(caption)
print(cap)
removed_caps.append(cap)
return removed_caps
def collate_fn_remove_corrupted(batch):
"""Collate function that allows to remove corrupted examples in the
dataloader. It expects that the dataloader returns 'None' when that occurs.
The 'None's in the batch are removed.
"""
# Filter out all the Nones (corrupted examples)
batch = list(filter(lambda x: x is not None, batch))
return batch
def main(args):
# GITにバッチサイズが1より大きくても動くようにパッチを当てる: transformers 4.26.0用
org_prepare_input_ids_for_generation = GenerationMixin._prepare_input_ids_for_generation
curr_batch_size = [args.batch_size] # ループの最後で件数がbatch_size未満になるので入れ替えられるように
# input_idsがバッチサイズと同じ件数である必要がある:バッチサイズはこの関数から参照できないので外から渡す
# ここより上で置き換えようとするとすごく大変
def _prepare_input_ids_for_generation_patch(self, bos_token_id, encoder_outputs):
input_ids = org_prepare_input_ids_for_generation(self, bos_token_id, encoder_outputs)
if input_ids.size()[0] != curr_batch_size[0]:
input_ids = input_ids.repeat(curr_batch_size[0], 1)
return input_ids
GenerationMixin._prepare_input_ids_for_generation = _prepare_input_ids_for_generation_patch
print(f"load images from {args.train_data_dir}")
train_data_dir_path = Path(args.train_data_dir)
image_paths = train_util.glob_images_pathlib(train_data_dir_path, args.recursive)
print(f"found {len(image_paths)} images.")
# できればcacheに依存せず明示的にダウンロードしたい
print(f"loading GIT: {args.model_id}")
git_processor = AutoProcessor.from_pretrained(args.model_id)
git_model = AutoModelForCausalLM.from_pretrained(args.model_id).to(DEVICE)
print("GIT loaded")
# captioningする
def run_batch(path_imgs):
imgs = [im for _, im in path_imgs]
curr_batch_size[0] = len(path_imgs)
inputs = git_processor(images=imgs, return_tensors="pt").to(DEVICE) # 画像はpil形式
generated_ids = git_model.generate(pixel_values=inputs.pixel_values, max_length=args.max_length)
captions = git_processor.batch_decode(generated_ids, skip_special_tokens=True)
if args.remove_words:
captions = remove_words(captions, args.debug)
for (image_path, _), caption in zip(path_imgs, captions):
with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding="utf-8") as f:
f.write(caption + "\n")
if args.debug:
print(image_path, caption)
# 読み込みの高速化のためにDataLoaderを使うオプション
if args.max_data_loader_n_workers is not None:
dataset = train_util.ImageLoadingDataset(image_paths)
data = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.max_data_loader_n_workers,
collate_fn=collate_fn_remove_corrupted,
drop_last=False,
)
else:
data = [[(None, ip)] for ip in image_paths]
b_imgs = []
for data_entry in tqdm(data, smoothing=0.0):
for data in data_entry:
if data is None:
continue
image, image_path = data
if image is None:
try:
image = Image.open(image_path)
if image.mode != "RGB":
image = image.convert("RGB")
except Exception as e:
print(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}")
continue
b_imgs.append((image_path, image))
if len(b_imgs) >= args.batch_size:
run_batch(b_imgs)
b_imgs.clear()
if len(b_imgs) > 0:
run_batch(b_imgs)
print("done!")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 出力されるキャプションファイルの拡張子")
parser.add_argument(
"--model_id",
type=str,
default="microsoft/git-large-textcaps",
help="model id for GIT in Hugging Face / 使用するGITのHugging FaceのモデルID",
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
parser.add_argument(
"--max_data_loader_n_workers",
type=int,
default=None,
help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)",
)
parser.add_argument("--max_length", type=int, default=50, help="max length of caption / captionの最大長")
parser.add_argument(
"--remove_words",
action="store_true",
help="remove like `with the words xxx` from caption / `with the words xxx`のような部分をキャプションから削除する",
)
parser.add_argument("--debug", action="store_true", help="debug mode")
parser.add_argument("--recursive", action="store_true", help="search for images in subfolders recursively / サブフォルダを再帰的に検索する")
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
main(args)
|