Spaces:
Build error
Build error
File size: 7,976 Bytes
11c2c17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import argparse
import glob
import os
import json
import random
import sys
from pathlib import Path
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
sys.path.append(os.path.dirname(__file__))
from blip.blip import blip_decoder
import library.train_util as train_util
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
IMAGE_SIZE = 384
# 正方形でいいのか? という気がするがソースがそうなので
IMAGE_TRANSFORM = transforms.Compose(
[
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
]
)
# 共通化したいが微妙に処理が異なる……
class ImageLoadingTransformDataset(torch.utils.data.Dataset):
def __init__(self, image_paths):
self.images = image_paths
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = self.images[idx]
try:
image = Image.open(img_path).convert("RGB")
# convert to tensor temporarily so dataloader will accept it
tensor = IMAGE_TRANSFORM(image)
except Exception as e:
print(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}")
return None
return (tensor, img_path)
def collate_fn_remove_corrupted(batch):
"""Collate function that allows to remove corrupted examples in the
dataloader. It expects that the dataloader returns 'None' when that occurs.
The 'None's in the batch are removed.
"""
# Filter out all the Nones (corrupted examples)
batch = list(filter(lambda x: x is not None, batch))
return batch
def main(args):
# fix the seed for reproducibility
seed = args.seed # + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if not os.path.exists("blip"):
args.train_data_dir = os.path.abspath(args.train_data_dir) # convert to absolute path
cwd = os.getcwd()
print("Current Working Directory is: ", cwd)
os.chdir("finetune")
print(f"load images from {args.train_data_dir}")
train_data_dir_path = Path(args.train_data_dir)
image_paths = train_util.glob_images_pathlib(train_data_dir_path, args.recursive)
print(f"found {len(image_paths)} images.")
print(f"loading BLIP caption: {args.caption_weights}")
model = blip_decoder(pretrained=args.caption_weights, image_size=IMAGE_SIZE, vit="large", med_config="./blip/med_config.json")
model.eval()
model = model.to(DEVICE)
print("BLIP loaded")
# captioningする
def run_batch(path_imgs):
imgs = torch.stack([im for _, im in path_imgs]).to(DEVICE)
with torch.no_grad():
if args.beam_search:
captions = model.generate(
imgs, sample=False, num_beams=args.num_beams, max_length=args.max_length, min_length=args.min_length
)
else:
captions = model.generate(
imgs, sample=True, top_p=args.top_p, max_length=args.max_length, min_length=args.min_length
)
for (image_path, _), caption in zip(path_imgs, captions):
with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding="utf-8") as f:
f.write(caption + "\n")
if args.debug:
print(image_path, caption)
# 読み込みの高速化のためにDataLoaderを使うオプション
if args.max_data_loader_n_workers is not None:
dataset = ImageLoadingTransformDataset(image_paths)
data = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.max_data_loader_n_workers,
collate_fn=collate_fn_remove_corrupted,
drop_last=False,
)
else:
data = [[(None, ip)] for ip in image_paths]
b_imgs = []
for data_entry in tqdm(data, smoothing=0.0):
for data in data_entry:
if data is None:
continue
img_tensor, image_path = data
if img_tensor is None:
try:
raw_image = Image.open(image_path)
if raw_image.mode != "RGB":
raw_image = raw_image.convert("RGB")
img_tensor = IMAGE_TRANSFORM(raw_image)
except Exception as e:
print(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}")
continue
b_imgs.append((image_path, img_tensor))
if len(b_imgs) >= args.batch_size:
run_batch(b_imgs)
b_imgs.clear()
if len(b_imgs) > 0:
run_batch(b_imgs)
print("done!")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument(
"--caption_weights",
type=str,
default="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth",
help="BLIP caption weights (model_large_caption.pth) / BLIP captionの重みファイル(model_large_caption.pth)",
)
parser.add_argument(
"--caption_extention",
type=str,
default=None,
help="extension of caption file (for backward compatibility) / 出力されるキャプションファイルの拡張子(スペルミスしていたのを残してあります)",
)
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 出力されるキャプションファイルの拡張子")
parser.add_argument(
"--beam_search",
action="store_true",
help="use beam search (default Nucleus sampling) / beam searchを使う(このオプション未指定時はNucleus sampling)",
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
parser.add_argument(
"--max_data_loader_n_workers",
type=int,
default=None,
help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)",
)
parser.add_argument("--num_beams", type=int, default=1, help="num of beams in beam search /beam search時のビーム数(多いと精度が上がるが時間がかかる)")
parser.add_argument("--top_p", type=float, default=0.9, help="top_p in Nucleus sampling / Nucleus sampling時のtop_p")
parser.add_argument("--max_length", type=int, default=75, help="max length of caption / captionの最大長")
parser.add_argument("--min_length", type=int, default=5, help="min length of caption / captionの最小長")
parser.add_argument("--seed", default=42, type=int, help="seed for reproducibility / 再現性を確保するための乱数seed")
parser.add_argument("--debug", action="store_true", help="debug mode")
parser.add_argument("--recursive", action="store_true", help="search for images in subfolders recursively / サブフォルダを再帰的に検索する")
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
# スペルミスしていたオプションを復元する
if args.caption_extention is not None:
args.caption_extension = args.caption_extention
main(args)
|