File size: 3,761 Bytes
434511b
 
 
 
 
 
 
4aaa812
 
 
434511b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aaa812
 
 
 
 
 
434511b
 
 
 
 
 
 
 
 
 
 
 
4aaa812
434511b
4aaa812
 
434511b
4aaa812
 
 
 
434511b
4aaa812
 
 
 
434511b
 
 
4aaa812
 
434511b
 
 
 
 
 
 
 
 
 
 
 
4aaa812
434511b
 
4aaa812
434511b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid

from tinyllava.utils import *
from tinyllava.data import *
from tinyllava.model import *

from PIL import Image
import math


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


def eval_model(args):
    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    
    model, tokenizer, image_processor, context_len = load_pretrained_model(model_path)
    model.to(device='cuda')    
    text_processor = TextPreprocess(tokenizer, args.conv_mode)
    data_args = model.config
    image_processor = ImagePreprocess(image_processor, data_args)

    questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")
    for line in tqdm(questions):
        idx = line["question_id"]
        image_file = line["image"]
        qs = line["text"]
        cur_prompt = qs

        qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

        msg = Message()
        msg.add_message(qs)

        result = text_processor(msg.messages, mode='eval')
        input_ids = result['input_ids']
        prompt = result['prompt']
        input_ids = input_ids.unsqueeze(0).cuda()

        image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB')
        image_tensor = image_processor(image)
        image_tensors = image_tensor.unsqueeze(0).half().cuda()
        image_sizes = [image.size]
        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=image_tensors,
                image_sizes=image_sizes,
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                top_p=args.top_p,
                num_beams=args.num_beams,
                # no_repeat_ngram_size=3,
                max_new_tokens=1024,
                use_cache=True)

        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()

        ans_id = shortuuid.uuid()
        ans_file.write(json.dumps({"question_id": idx,
                                   "prompt": prompt,
                                   "text": outputs,
                                   "answer_id": ans_id,
                                   "model_id": args.model_base,
                                   "metadata": {}}) + "\n")
        ans_file.flush()
    ans_file.close()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--image-folder", type=str, default="")
    parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
    parser.add_argument("--answers-file", type=str, default="answer.jsonl")
    parser.add_argument("--conv-mode", type=str, default="llava_v1")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    args = parser.parse_args()

    eval_model(args)