Spaces:
Runtime error
Runtime error
File size: 7,210 Bytes
46f5320 0128fae 46f5320 28bef93 48a206d 247946c 46f5320 05912c7 5fb1d22 20fea99 46f5320 335cdd4 05912c7 4cf8d83 ac44250 12058fc ac44250 12058fc ac44250 836e833 ac44250 12058fc ac44250 ff85563 ac44250 4cf8d83 ff85563 4cf8d83 8f1bf52 335cdd4 12058fc ff85563 335cdd4 12058fc ff85563 335cdd4 12058fc 335cdd4 3cffb60 185d33a 15a3232 99642f9 28bef93 20fea99 28bef93 20fea99 28bef93 20fea99 28bef93 20fea99 28bef93 20fea99 28bef93 20fea99 28bef93 20fea99 28bef93 20fea99 28bef93 20fea99 28bef93 20fea99 28bef93 20fea99 feb25ed 20fea99 feb25ed 20fea99 feb25ed 20fea99 feb25ed 20fea99 48a206d 20fea99 48a206d 685a923 20fea99 48a206d 20fea99 48a206d 20fea99 48a206d 20fea99 247946c 20fea99 247946c 20fea99 247946c 20fea99 247946c 20fea99 247946c 20fea99 c1fade2 20fea99 c1fade2 20fea99 c1fade2 20fea99 c1fade2 20fea99 c1fade2 20fea99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
"""FastAPI endpoint
To run locally use 'uvicorn app:app --host localhost --port 7860'
"""
import ast
import scripts.quiz.generators as generators
import scripts.quiz.hints as hints
import scripts.quiz.questions as questions
import scripts.quiz.utils as utils
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from mathtext.sentiment import sentiment
from mathtext.text2int import text2int
from pydantic import BaseModel
from mathtext_fastapi.logging import prepare_message_data_for_logging
from mathtext_fastapi.conversation_manager import manage_conversation_response
from mathtext_fastapi.nlu import evaluate_message_with_nlu
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
class Text(BaseModel):
content: str = ""
@app.get("/")
def home(request: Request):
return templates.TemplateResponse("home.html", {"request": request})
@app.post("/hello")
def hello(content: Text = None):
content = {"message": f"Hello {content.content}!"}
return JSONResponse(content=content)
@app.post("/sentiment-analysis")
def sentiment_analysis_ep(content: Text = None):
ml_response = sentiment(content.content)
content = {"message": ml_response}
return JSONResponse(content=content)
@app.post("/text2int")
def text2int_ep(content: Text = None):
ml_response = text2int(content.content)
content = {"message": ml_response}
return JSONResponse(content=content)
@app.post("/manager")
async def programmatic_message_manager(request: Request):
"""
Calls conversation management function to determine the next state
Input
request.body: dict - message data for the most recent user response
{
"author_id": "+47897891",
"contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09",
"author_type": "OWNER",
"message_body": "a test message",
"message_direction": "inbound",
"message_id": "ABJAK64jlk3-agjkl2QHFAFH",
"message_inserted_at": "2022-07-05T04:00:34.03352Z",
"message_updated_at": "2023-02-14T03:54:19.342950Z",
}
Output
context: dict - the information for the current state
{
"user": "47897891",
"state": "welcome-message-state",
"bot_message": "Welcome to Rori!",
"user_message": "",
"type": "ask"
}
"""
data_dict = await request.json()
context = manage_conversation_response(data_dict)
return JSONResponse(context)
@app.post("/nlu")
async def evaluate_user_message_with_nlu_api(request: Request):
""" Calls nlu evaluation and returns the nlu_response
Input
- request.body: json - message data for the most recent user response
Output
- int_data_dict or sent_data_dict: dict - the type of NLU run and result
{'type':'integer', 'data': '8'}
{'type':'sentiment', 'data': 'negative'}
"""
data_dict = await request.json()
message_data = data_dict.get('message_data', '')
nlu_response = evaluate_message_with_nlu(message_data)
return JSONResponse(content=nlu_response)
@app.post("/start")
async def ask_math_question(request: Request):
"""Generate a question data
Input
{
'difficulty': 0.1,
'do_increase': True | False
}
Output
{
'text': 'What is 1+2?',
'difficulty': 0.2,
'question_numbers': [3, 1, 4]
}
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
difficulty = message_data['difficulty']
do_increase = message_data['do_increase']
return JSONResponse(generators.start_interactive_math(difficulty, do_increase))
@app.post("/hint")
async def get_hint(request: Request):
"""Generate a hint data
Input
{
'start': 5,
'step': 1,
'difficulty': 0.1
}
Output
{
'text': 'What number is greater than 4 and less than 6?',
'difficulty': 0.1,
'question_numbers': [5, 1, 6]
}
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
start = message_data['start']
step = message_data['step']
difficulty = message_data['difficulty']
return JSONResponse(hints.generate_hint(start, step, difficulty))
@app.post("/question")
async def ask_math_question(request: Request):
"""Generate a question data
Input
{
'start': 5,
'step': 1,
'question_num': 1 # optional
}
Output
{
'question': 'What is 1+2?',
'start': 5,
'step': 1,
'answer': 6
}
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
start = message_data['start']
step = message_data['step']
arg_tuple = (start, step)
try:
question_num = message_data['question_num']
arg_tuple += (question_num,)
except KeyError:
pass
return JSONResponse(questions.generate_question_data(*arg_tuple))
@app.post("/difficulty")
async def get_hint(request: Request):
"""Generate a number matching difficulty
Input
{
'difficulty': 0.01,
'do_increase': True
}
Output - value from 0.01 to 0.99 inclusively:
0.09
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
difficulty = message_data['difficulty']
do_increase = message_data['do_increase']
return JSONResponse(utils.get_next_difficulty(difficulty, do_increase))
@app.post("/start_step")
async def get_hint(request: Request):
"""Generate a start and step values
Input
{
'difficulty': 0.01,
'path_to_csv_file': 'scripts/quiz/data.csv' # optional
}
Output - tuple (start, step):
(5, 1)
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
difficulty = message_data['difficulty']
arg_tuple = (difficulty,)
try:
path_to_csv_file = message_data['path_to_csv_file']
arg_tuple += (path_to_csv_file,)
except KeyError:
pass
return JSONResponse(utils.get_next_difficulty(*arg_tuple))
@app.post("/sequence")
async def generate_question(request: Request):
"""Generate a sequence from start, step and optional separator parameter
Input
{
'start': 5,
'step': 1,
'sep': ', ' # optional
}
Output
5, 6, 7
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
start = message_data['start']
step = message_data['step']
arg_tuple = (start, step)
try:
sep = message_data['sep']
arg_tuple += (sep,)
except KeyError:
pass
return JSONResponse(utils.convert_sequence_to_string(*arg_tuple))
|