Spaces:
Runtime error
Runtime error
File size: 3,064 Bytes
46f5320 0128fae 46f5320 5f4baa5 46f5320 05912c7 5fb1d22 185d33a 12058fc 185d33a 46f5320 335cdd4 05912c7 4cf8d83 ac44250 12058fc ac44250 12058fc ac44250 836e833 ac44250 12058fc ac44250 ff85563 ac44250 4cf8d83 ff85563 4cf8d83 8f1bf52 335cdd4 12058fc ff85563 335cdd4 12058fc ff85563 335cdd4 12058fc 335cdd4 3cffb60 185d33a 15a3232 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
"""FastAPI endpoint
To run locally use 'uvicorn app:app --host localhost --port 7860'
"""
import re
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from mathtext.sentiment import sentiment
from mathtext.text2int import text2int
from pydantic import BaseModel
from mathtext_fastapi.logging import prepare_message_data_for_logging
from mathtext_fastapi.conversation_manager import manage_conversation_response
from mathtext_fastapi.nlu import evaluate_message_with_nlu
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
class Text(BaseModel):
content: str = ""
@app.get("/")
def home(request: Request):
return templates.TemplateResponse("home.html", {"request": request})
@app.post("/hello")
def hello(content: Text = None):
content = {"message": f"Hello {content.content}!"}
return JSONResponse(content=content)
@app.post("/sentiment-analysis")
def sentiment_analysis_ep(content: Text = None):
ml_response = sentiment(content.content)
content = {"message": ml_response}
return JSONResponse(content=content)
@app.post("/text2int")
def text2int_ep(content: Text = None):
ml_response = text2int(content.content)
content = {"message": ml_response}
return JSONResponse(content=content)
@app.post("/manager")
async def programmatic_message_manager(request: Request):
"""
Calls conversation management function to determine the next state
Input
request.body: dict - message data for the most recent user response
{
"author_id": "+47897891",
"contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09",
"author_type": "OWNER",
"message_body": "a test message",
"message_direction": "inbound",
"message_id": "ABJAK64jlk3-agjkl2QHFAFH",
"message_inserted_at": "2022-07-05T04:00:34.03352Z",
"message_updated_at": "2023-02-14T03:54:19.342950Z",
}
Output
context: dict - the information for the current state
{
"user": "47897891",
"state": "welcome-message-state",
"bot_message": "Welcome to Rori!",
"user_message": "",
"type": "ask"
}
"""
data_dict = await request.json()
context = manage_conversation_response(data_dict)
return JSONResponse(context)
@app.post("/nlu")
async def evaluate_user_message_with_nlu_api(request: Request):
""" Calls nlu evaluation and returns the nlu_response
Input
- request.body: json - message data for the most recent user response
Output
- int_data_dict or sent_data_dict: dict - the type of NLU run and result
{'type':'integer', 'data': '8'}
{'type':'sentiment', 'data': 'negative'}
"""
data_dict = await request.json()
message_data = data_dict.get('message_data', '')
nlu_response = evaluate_message_with_nlu(message_data)
return JSONResponse(content=nlu_response)
|